ON THE NOTION OF REGULARITY OF METHODS OF SUMMATION OF INFINITE SERIES

BY J. D. TAMARKIN*

Let $\mathfrak{Q}=\left(a_{m n}\right)$ be the matrix of a method of summation which consists in replacing a given sequence $x=\left(x_{1}, x_{2}, \cdots\right)$ by its transform

$$
\begin{equation*}
y=\left(y_{1}, y_{2}, \cdots\right), \quad y_{m}=\sum_{n=1}^{\infty} a_{m n} x_{n}, \quad(m=1,2, \cdots) \tag{1}
\end{equation*}
$$

and defining the generalized limit of x_{n} as $\lim _{m \rightarrow \infty} y_{m}$, provided this limit exists.

The method \mathfrak{H} is called regular if every convergent sequence $x=\left\{x_{n}\right\}$ is transformed into a convergent sequence $y=\left\{y_{m}\right\}$ with the same limit. Necessary and sufficient conditions for regularity of \mathfrak{A} are too well known to be restated here. An essential point in the whole theory is the assumption that the sequence $y \equiv y(x)$ is determined by formula (1) for each convergent sequence x. A (quite trivial) gain in generality may be achieved by demanding that not all the terms y_{m} of the sequence $\left\{y_{m}\right\}$ have to be considered but only those for which $m \geqq m_{0}$, where m_{0} is a fixed integer. Even this requirement is not at all necessary, however, for the possibility of evaluating $\lim _{m \rightarrow \infty} y_{m}$, for which we have to know only almost all terms of the sequence $\left\{y_{m}\right\}$, that is all $y_{m}, m \geqq m^{\prime}$, where m^{\prime} need not be fixed, but on the contrary, may depend on the sequence x.

Thus we are naturally led to the following apparently less restrictive definition of regularity of the method of summation $\mathfrak{2}$.

The method of summation \mathfrak{A} is regular if (i) to every convergent sequence $x=\left\{x_{n}\right\}$ there corresponds an integer $m^{\prime}(x)$ such that y_{m} as given by (1) exists for $m \geqq m^{\prime}(x)$, and (ii) for a fixed x,

$$
\lim _{m \rightarrow \infty} y_{m}=\lim _{n \rightarrow \infty} x_{n} .
$$

It turns out, however, that the modified definition of regularity

[^0]
[^0]: * The result of this note answers a question raised by Dr. H. Lewy.

