measure. Let L be a positive number and let z(t, L) be equal either to $z_1(t)$ or $z_2(t)$ according as [t/L] is even or odd. It is clear that z(t, L) is an S.a.p. solution of $\Phi[z(t), F(t)] = 0$ for each positive L, and that all these solutions are essentially distinct. Of course many other solutions could be constructed in a similar way.

Brown University and Princeton University

ON A LEMMA OF FEJÉR*

BY LINCOLN LA PAZ

1. Simple Integrals. In an important paper L. Fejér† has verified and used the following lemma.

LEMMA A. If for a problem of minimizing an integral

(1)
$$I_1 = \int_{x_1}^{x_2} \phi(y') \cdot f(x, y) dx,$$

the Euler equation in normal form is

(1')
$$y'' = F(x, y, y'),$$

then for a problem of minimizing the integral

(2)
$$J_1 = \int_{x_1}^{x_2} [\phi(y')/f(x, y)] dx,$$

the Euler equation in normal form is

(2')
$$y'' = -F(x, y, y').$$

The following generalization of Fejér's lemma is proved in this note.‡

^{*} Presented to the Society, December 2, 1933.

[†] L. Fejér, Das Ostwaldsche Prinzip in der Mechanik, Mathematische Annalen, vol. 61 (1905), p. 432.

[‡] In everything that follows, the range of the indices i, j, k, μ , ν is from 1 to n and μ are umbral.