1934.]

ON THE THEORY OF RESIDUES OF POLYGENIC FUNCTIONS*

BY V. C. POOR

1. Introduction. In polygenic function theory we are interested in a sub-class of the class of all functions, such that

$$f(z) = f(\xi, \zeta),$$

where ξ and ζ are complex variables; that is, such that when ξ and ζ are assigned f(z) is known. The particular sub-class to which we restrict ourselves is the class such that ζ is always the conjugate of ξ , or

$$f(z) = f(z, \bar{z}).$$

For a brief outline of this subject and a quite complete bibliography one should consult the paper by Hedrick[†] in this Bulletin.

It is the purpose of this paper to generalize the definitions for residues of polygenic functions previously given[‡] and to extend the theory. Incidentally in the process, the circulation theorems§ are generalized; a theorem on residues of regular functions is obtained, while the theory is applied to the large class of functions defined by a Laurent series.

2. The Definitions for Residues. If we surround the point z=a by a circle O, center at a and radius r, then the residue R_z of f(z) is defined by the equation,

(1)
$$R_z = \lim_{r\to 0} \frac{1}{2\pi i} \int_O f(z) dz;$$

while the residue R_{z} , which is of equal importance, is

^{*} Presented to the Society, December 27, 1933.

[†] E. R. Hedrick, Non-analytic functions of a complex variable, this Bulletin, vol. 39 (1933), pp. 75–96.

[‡] V. C. Poor, *Residues of polygenic functions*, Transactions of this Society, vol. 32 (1930), pp. 216-222.

[§] Poor, loc. cit. Calugaréano, (Thesis), Sur les fonctions polygènes d'une variable complexe, 1928, p. 11.

^{||} Poor, loc. cit., §1.