THE PRINCIPAL MATRICES OF A RIEMANN MATRIX*

BY A. A. ALBERT

1. Introduction. A matrix ω with p rows and 2p columns of complex elements is called a *Riemann matrix* if there exists a rational 2p-rowed skew-symmetric matrix C such that

(1)
$$\omega C \omega' = 0, \quad \pi = i \omega C \bar{\omega}'$$

is positive definite. The matrix C is called a principal matrix of ω and it is important in algebraic geometry to know what are all principal matrices of ω in terms of a given one. In the present note I shall solve this problem.

2. Principal Matrices. A rational 2*p*-rowed square matrix A is called a projectivity of ω if

(2)
$$\alpha \omega = \omega A$$

for a p-rowed complex matrix α . The Riemann matrices ω have recently[†] been completely classified in terms of their projectivities; so we may regard all the projectivities A of ω as known.

A projectivity A is called symmetric if $CA'C^{-1}=A$. Let A be a symmetric projectivity so that if B=AC, then B'=(AC)'=-CA'=-AC=-B is a skew-symmetric matrix. Then iACis Hermitian and so must be

(3)
$$\delta = \omega(iAC)\overline{\omega}' = \alpha(i\omega C\overline{\omega}') = \alpha\pi.$$

Now π is positive definite so that $\pi = \rho \overline{\rho}'$, where ρ is nonsingular. Then $\pi^{-1} = (\overline{\rho}')^{-1} \rho^{-1} = \overline{\sigma}' \sigma$ with σ non-singular. Hence $\alpha = \delta \pi^{-1} = \delta \overline{\sigma}' \sigma$ and

(4)
$$\sigma\alpha\sigma^{-1} = \sigma\delta\overline{\sigma}'.$$

The matrix $\sigma \delta \bar{\sigma}'$ is evidently Hermitian and it is well known that then $\sigma \delta \bar{\sigma}'$ and the similar matrix α have only simple ele-

^{*} Presented to the Society, September 7, 1934.

 $[\]dagger$ See my paper A solution of the principal problem in the theory of Riemann matrices, Annals of Mathematics, October, 1934.