THE PRINCIPAL MATRICES OF A RIEMANN MATRIX*

BY A. A. ALBERT

1. Introduction. A matrix ω with p rows and $2 p$ columns of complex elements is called a Riemann matrix if there exists a rational $2 p$-rowed skew-symmetric matrix C such that

$$
\begin{equation*}
\omega C \omega^{\prime}=0, \quad \pi=i \omega C \bar{\omega}^{\prime} \tag{1}
\end{equation*}
$$

is positive definite. The matrix C is called a principal matrix of ω and it is important in algebraic geometry to know what are all principal matrices of ω in terms of a given one. In the present note I shall solve this problem.
2. Principal Matrices. A rational $2 p$-rowed square matrix A is called a projectivity of ω if

$$
\begin{equation*}
\alpha \omega=\omega A \tag{2}
\end{equation*}
$$

for a p-rowed complex matrix α. The Riemann matrices ω have recently \dagger been completely classified in terms of their projectivities; so we may regard all the projectivities A of ω as known.

A projectivity A is called symmetric if $C A^{\prime} C^{-1}=A$. Let A be a symmetric projectivity so that if $B=A C$, then $B^{\prime}=(A C)^{\prime}$ $=-C A^{\prime}=-A C=-B$ is a skew-symmetric matrix. Then $i A C$ is Hermitian and so must be

$$
\begin{equation*}
\delta=\omega(i A C) \bar{\omega}^{\prime}=\alpha\left(i \omega C \bar{\omega}^{\prime}\right)=\alpha \pi \tag{3}
\end{equation*}
$$

Now π is positive definite so that $\pi=\rho \bar{\rho}^{\prime}$, where ρ is nonsingular. Then $\pi^{-1}=\left(\bar{\rho}^{\prime}\right)^{-1} \rho^{-1}=\bar{\sigma}^{\prime} \sigma$ with σ non-singular. Hence $\alpha=\delta \pi^{-1}=\delta \bar{\sigma}^{\prime} \sigma$ and

$$
\begin{equation*}
\sigma \alpha \sigma^{-1}=\sigma \delta \bar{\sigma}^{\prime} . \tag{4}
\end{equation*}
$$

The matrix $\sigma \delta \bar{\sigma}^{\prime}$ is evidently Hermitian and it is well known that then $\sigma \delta \bar{\sigma}^{\prime}$ and the similar matrix α have only simple ele-

[^0]
[^0]: * Presented to the Society, September 7, 1934.
 \dagger See my paper A solution of the principal problem in the theory of Riemann matrices, Annals of Mathematics, October, 1934.

