THE CONVERSE OF WARING'S PROBLEM

BY L. E. DICKSON

1. Introduction. In the most general Waring problem we are given a set of integers $\geqq 0$ and seek k such that every integer (or every sufficiently large integer) is a sum of k numbers of the set. We then call the set a k-set. In the converse problem, k is given and we seek all k-sets. There exist infinitely many k-sets; for example, (1) and (2).

In case every integer $\geqq 0$ is a sum of k numbers of a set, we call the latter a universal k-set. It must contain 0 and 1 . By way of introduction, we construct some universal 2 -sets.
I. As the nth element of the set choose the least integer which is not a sum of any two of the first $n-1$ elements. The set is composed of 0 and all positive odd integers.
II. The set with $0,1,2$ and later elements chosen as in I is composed of $0,1,2+3 x,(x=0,1, \cdots)$. It is a universal 2 -set.
III. After 0 and 1 choose the nth element as in I when n is odd, but subtract 1 from the least when n is even. We get the universal 2 -set composed of $0,1,3+6 x, 4+6 x,(x=0,1, \cdots)$.
IV. After 0 and 1 employ blocks of three elements. Those in a block are odd (least as in I), odd (least), even (least less 1). We get the universal 2 -set $0,1,3+10 x, 5+10 x, 6+10 x,(x=0$, 1, • •).
V. Our aim here is to construct a bizarre 2 -set. After 0, 1 employ blocks of $2,3,4, \cdots$ elements, where the last element of a block is even and the others are all odd, while the nth element is either the least or 1 less than the least integer which is not a sum of any two of the first $n-1$ elements. We get the set $0,1,3,4,9,11,16,21,23,27,28,33,35,39,41,46$, $53,59,65,71,77,82, ~ 83,89,95,97,101,107,114,119,125$, $127,133,139,145,151,156,163,169,175,181,187,193,199$, 205, 212, 217, 219, 225, 231, 237, 243, 249, 255, 261, 266, 267, $273,279,285,291,297,303,309,311,317,322$, 329 , etc.

Unlike I-IV, there is apparently no simple independent definition of this 2 -set. If we take the first elements of the successive blocks and form their differences of the second order,

