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NOTE ON CARSON'’S INTEGRAL EQUATION
BY J. J. SLADE, JR.

The theory of Heaviside’s operational methods has been de-
veloped in various papers. Wiener* has perhaps given the most
rigorous theory of these operators. Carsont has certainly given
the most elaborate.

For the manipulation of these operators Carson’s methods
appear to be the most direct. The solution of the operational
equation
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is identified with the solution of the integral equation}
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in which the real part of p is positive, the path of integration is
along the real axis, and ¢(¢) is to be defined for positive real
values of .
Dalzell§ has pointed out that the general solution of the equa-
tion is
ct+ico
o0 = — [ L2,

2w c—1c0 P

and March|| has shown that Bromwich’s contour integrals sat-
isfy it.
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