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ALGEBRAIC D I F F E R E N C E EQUATIONS* 

BY J. F. RITT 

1. Introduction. It was observed by J. C. Charles in 1788f 
that non-linear algebraic difference equations of the first order, 
even if algebraically irreducible, might have more than one solu­
tion involving an arbitrary periodic function. For instance, 

(1) y= (x + c)\ 

where c is an arbitrary function of period unity, is a solution of 

(2) [y(x + 1) - y(x)Y - l[y{x + 1) + y(x)] + 1 = 0 . 

The first member of (2) is irreducible, in the domain of rational­
ity of all constants, as a polynomial in y(x + l) and y{x). Still (2) 
admits, in additon to (1), the solution 

1 
(3) y= (ce*** + -)*, 

where c is a function of period unity. The complete solution of (2) 
is given by (1) and (3). 

Although the formal aspects of non-linear algebraic difference 
equations intrigued considerably several of the early French 
analysts, the general theory of such equations appears to have 
received, as yet, but scant attention. The first move towards a 
comprehensive theory seems to be contained in a recent paper 
by J. L. Doob and myself,J in which a definition was given 
of irreducible system of algebraic difference equations, and in 
which it was shown that every system of such equations is 
equivalent to a finite set of irreducible systems. The problem 
now is one of studying irreducible systems. Until an adequate 
existence theory is developed for systems of non-linear differ-
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