ENUMERATIVE PROPERTIES OF r-SPACE CURVES*

BY B. C. WONG

In the determination of enumerative properties of algebraic curves it is of ten convenient to decompose a given curve C^{n} of order n and genus p to be studied into a number of component curves the sum of whose orders is equal to n. We may decompose C^{n} in various ways but we find it most convenient to decompose it completely into n lines with $n-1+p$ incidences. We call the system formed by these n lines an n-line or a skew n-sided polygon Γ with $n-1+p$ vertices. To determine the enumerative properties of the given curve C^{n}, we, in this paper, determine certain enumerative properties of Γ and then interpret the results for C^{n}. We shall obtain in this manner a number of results for C^{n} some of which are already well known and the others are less well known or are new.

Let the symbol $\{n\}_{x_{1}}{ }^{(s)}{ }_{x_{2}} \ldots x_{q}$ denote the number of groups each consisting of $x_{1}+x_{2}+\cdots+x_{q}$ sides which are arranged in q sets such that each set contains x_{i} consecutive sides and that any two sets are separated by at least s consecutive sides not contained in them. Thus, $\{n\}_{11}^{(1)}$ means the number of pairs of non-consecutive sides of Γ. If $q=1$, we have $\{n\}_{x_{1}}^{(s)}$ or just $\{n\}_{x_{1}}$ which is the number of groups each of x_{1} consecutive sides. The symbol $\{n\}^{(s)}$ or $\{n\}$ means the number of groups each containing no members and is therefore equal to unity. Hence,

$$
\begin{equation*}
\{n\}^{(s)}=\{n\}=1 \tag{1}
\end{equation*}
$$

The following formula can be easily verified or can be proved by the method used below:

$$
\begin{equation*}
\{n\}_{x_{1}}^{(s)}=\{n\}_{x_{1}}=n-\left(x_{1}-1\right)+\left(x_{1}-1\right) p \tag{2}
\end{equation*}
$$

The number of groups each consisting of q pairs of intersecting sides (or the number of groups of q non-consecutive vertices) of Γ is known \dagger and is given by

[^0]
[^0]: * Presented to the Society, November 28, 1931.
 \dagger This result is given without proof by B. C. Wong, On loci of $(r-2)$-spaces incident with curves in r-space, this Bulletin, vol. 36 (1930), pp. 755-761.

