A REMARK ON THE PRECEDING NOTE BY BOCHNER

BY I. J. SCHOENBERG

In the preceding paper in this Bulletin,* S. Bochner has proved the following theorem: If $\phi(t)$ is continuous for $-\infty < t < \infty$ and has the property that the inequality

(1)
$$\left| \sum_{r=1}^{n} c_r \phi(t_r) \right| \leq K \cdot \sup_{-\infty < \xi < \infty} \left| \sum_{r=1}^{n} c_r e^{it_r \xi} \right|$$

holds for any n and for any complex-valued constants c_r and real constants t_r , then

(2)
$$\phi(t) = \int_{-\infty}^{\infty} e^{it\xi} d\eta(\xi), \quad with \quad V_{-\infty}^{+\infty}(\eta) \leq K.$$

Here is a simple proof of the following modification of the above theorem: If $\phi(t)$ is measurable and the inequality

(3)
$$\left| \int_{-\infty}^{\infty} \phi(t) q(t) dt \right| \leq K \cdot \max_{\xi} \left| \int_{-\infty}^{\infty} e^{it\xi} q(t) dt \right|$$

holds for every $q(t) \subset L$, then there is a function of bounded variation $\eta(\xi)$ such that (2) holds almost everywhere.

For let A be the space of functions $q(t) \subset L$, with

$$||q|| = \max_{\xi} \left| \int_{-\infty}^{\infty} e^{i\xi t} q(t) dt \right|,$$

and let B be the space of functions

$$\psi(t) = \int_{-\infty}^{\infty} e^{it\xi} d\eta(\xi),$$

with $\|\psi\| = V_{-\infty}^{+\infty}(\eta)$. The space A is isometric with the space A' of functions

^{*} Vol. 40 (1934), pp. 271-276.

[†] Compare with the note by F. Riesz, Über Sätze von Stone und Bochner, Acta Szeged, vol. 6 (1933), pp. 184-198, which suggested to me the present remark.