1934.]

A THEOREM ON FOURIER-STIELTJES INTEGRALS

BY S. BOCHNER

1. Introduction. If $V(\alpha)$ is a (complex-valued) function of bounded variation in $-\infty < \alpha < \infty$,

(1)
$$\int_{-\infty}^{\infty} |dV(\alpha)| = M < \infty,$$

then the function

(2)
$$f(x) = \int_{-\infty}^{\infty} e^{ix\alpha} dV(\alpha)$$

is a bounded continuous function in $-\infty < x < \infty$. We denote the class of these functions f(x) by \mathfrak{B} . The *distribution function* $V(\alpha)$ which generates f(x) is essentially unique* and we shall call the number M the norm of f(x).

A sub-class of \mathfrak{B} is the class \mathfrak{B} of those functions f(x) whose distribution function is (real and) non-decreasing. The class of the latter functions coincides with the class of the so-called *positive-definite* functions for which I have recently given an independent characterization.[†] It is immediately seen that the functions of \mathfrak{B} consist of all expressions

$$f_1(x) - f_2(x) + i f_3(x) - i f_4(x),$$

in which f_1 , f_2 , f_3 , f_4 are any positive-definite functions. This indirect characterization of the class \mathfrak{B} is of no interest. But we shall describe the class \mathfrak{B} by an entirely different *direct* property, which is an imitation of a well known criterion due to F. Riesz.

THEOREM. In order that a bounded continuous function f(x) be a function of \mathfrak{B} with norm $\leq M$ it is necessary and sufficient

^{*} See S. Bochner, Vorlesungen über Fouriersche Integrale, Leipzig, 1932, p. 18 ff.

[†] Loc. cit. Compare also F. Riesz, Über Sätze von Stone und Bochner, Acta Szeged, vol. 6 (1933), pp. 184–198; and, for the case of several variables, S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse, Mathematische Annalen, vol. 108 (1933), pp. 378–410.