ON POLYNOMIALS IN A GALOIS FIELD* by leonard carlitz \dagger

1. Introduction. Let p be an arbitrary prime, n an integer $\geqq 1$, $G F\left(p^{n}\right)$ the Galois field of order p^{n}; let $\mathfrak{D}\left(x, p^{n}\right)$ denote the totality of primary polynomials in the indeterminate x, with coefficients in $G F\left(p^{n}\right)$, that is, of polynomials such that the coefficient of the highest power of x is unity. In this note we give a number of miscellaneous results concerning the elements of \mathfrak{D}. The results are of two kinds. The first involve generalizations of certain formulas treated by the writer in another paper. \ddagger Thus if we let $\tau^{(\alpha)}(E)$ denote the number of divisors of E of degree α, then, for $\alpha \leqq \beta$ and $\alpha+\beta \leqq \nu, \nu$ the degree of E (we may evidently assume without any loss in generality that $\alpha, \beta \leqq \nu / 2$),

$$
\begin{equation*}
\sum \tau^{(\alpha)}(E) \tau^{(\beta)}(E)=(\alpha+1) p^{n \nu}-\alpha p^{n(\nu-1)} \tag{1}
\end{equation*}
$$

the summation on the left being taken over all polynomials E of degree ν. The other results of this kind involve generalized totient functions, as defined in $\S 4$.

The second group of formulas are of a different nature. Let us write p_{0} for p^{n}, and define

$$
F_{\rho}(\nu)=\prod_{\alpha=1}^{\nu}\left(x^{p_{0} \alpha}-x\right)^{p_{0} \rho(\nu-\alpha)}, F(\nu)=F_{1}(\nu)
$$

Then we show that the least common multiple of the polynomials of degree ν is

$$
\begin{equation*}
L(\nu)=F_{0}(\nu) ; \tag{2}
\end{equation*}
$$

the product of all the polynomials of degree ν is

$$
\begin{equation*}
\prod_{\operatorname{deg} E=\nu} E=F(\nu)=F_{1}(\nu) ; \tag{3}
\end{equation*}
$$

if $Q_{\rho}(\nu)$ denote the product of those polynomials of degree ν that

[^0]
[^0]: * Presented to the Society, August 31, 1932.
 \dagger International Research Fellow.
 \ddagger The arithmetic of polynomials in a Galois field, American Journal of Mathematics, vol. 54 (1932), pp. 39-50. Cited as A.P.

