[October,

ON POLYNOMIALS IN A GALOIS FIELD*

BY LEONARD CARLITZ[†]

1. Introduction. Let p be an arbitrary prime, n an integer ≥ 1 , $GF(p^n)$ the Galois field of order p^n ; let $\mathfrak{D}(x, p^n)$ denote the totality of *primary* polynomials in the indeterminate x, with coefficients in $GF(p^n)$, that is, of polynomials such that the coefficient of the highest power of x is unity. In this note we give a number of miscellaneous results concerning the elements of \mathfrak{D} . The results are of two kinds. The first involve generalizations of certain formulas treated by the writer in another paper.[‡] Thus if we let $\tau^{(\alpha)}(E)$ denote the number of divisors of E of degree α , then, for $\alpha \leq \beta$ and $\alpha + \beta \leq \nu$, ν the degree of E (we may evidently assume without any loss in generality that $\alpha, \beta \leq \nu/2$),

(1)
$$\sum \tau^{(\alpha)}(E)\tau^{(\beta)}(E) = (\alpha+1)p^{n\nu} - \alpha p^{n(\nu-1)},$$

the summation on the left being taken over all polynomials E of degree ν . The other results of this kind involve generalized totient functions, as defined in §4.

The second group of formulas are of a different nature. Let us write p_0 for p^n , and define

$$F_{\rho}(\nu) = \prod_{\alpha=1}^{\nu} (x^{p_0 \alpha} - x)^{p_0 \rho(\nu-\alpha)}, F(\nu) = F_1(\nu).$$

Then we show that the least common multiple of the polynomials of degree ν is

(2)
$$L(\nu) = F_0(\nu);$$

the product of all the polynomials of degree ν is

(3)
$$\prod_{\deg E=\nu} E = F(\nu) = F_1(\nu);$$

if $Q_{\rho}(\nu)$ denote the product of those polynomials of degree ν that

^{*} Presented to the Society, August 31, 1932.

[†] International Research Fellow.

[‡] The arithmetic of polynomials in a Galois field, American Journal of Mathematics, vol. 54 (1932), pp. 39-50. Cited as A.P.