ON CERTAIN CHARACTERISTICS OF *k*-DIMENSIONAL VARIETIES IN *r*-SPACE

BY B. C. WONG

An algebraic variety of k dimensions in r-space has numerous characteristics besides its order n. The characteristics of algebraic curves and surfaces and the relations they satisfy are known. In this paper we consider a variety V_k of dimension k greater than 2. Assuming it to be the complete intersection of r-k hypersurfaces of orders n_1, n_2, \dots, n_{r-k} respectively in S_r , we derive the formulas for a few of its characteristics in terms of the n's and incidentally obtain the relations connecting them. To avoid unnecessary length of discussion we consider somewhat in detail the V_3 in S_7 only and then give the results without demonstration for V_k in S_r .* The method here employed is the familiar one of complete degeneration which we have repeatedly made use of elsewhere in dealing with problems of similar nature.[†]

Now for the purpose of enumerating the characteristics of V_k and obtaining their relations we may regard the variety as belonging to an S_{2k+1} , for a V_k belonging to an S_r where r > 2k+1possesses no characteristics not possessed by a V_k of S_{2k+1} . If we project V_k from a general S_{t-1} of S_{2k+1} on to an S_{2k+1-t} $[0 \le t \le k]$ of S_{2k+1} , we have for projection a $V_k^{(l)}$ possessing a double (t-1)-dimensional variety V_{t-2}^{b-1} of order b_{t-1} and a pinch (t-2)-dimensional variety V_{t-2}^{j-2} of order j_{t-2} lying on V_{t-1}^{b-1} . From a general point of S_{2k+1-t} we can construct ∞^t lines forming a (t+1)-dimensional cone of order b_t each meeting $V_k^{(t)}$ in two distinct points. We say that $V_k^{(l)}$ has an apparent double $V_t^{b_t}$ of order b_t . Again, from a general point of S_{2k+1-t} a t-dimensional cone of ∞^{t-1} lines of order j_{t-1} can be constructed tangent to

^{*} Some work has been done along this line. See C. Segre, *Mehrdimensionale Räume*, Encyklopädie der Mathematischen Wissenschaften, III₂, 7, pp. 922–927.

[†] B. C. Wong, On the number of apparent multiple points of varieties in hyperspace, this Bulletin, vol. 36, pp. 102–106; and On surfaces in spaces of four and five dimensions, this Bulletin, vol. 36, pp. 861–866.