ON UNIT-ZERO BOOLEAN REPRESENTATIONS OF OPERATIONS AND RELATIONS*

BY B. A. BERNSTEIN

1. Introduction. Consider an algebra $(K, +, \times)$, such as ordinary real algebra, in which there are two elements "0" and "1" having the properties that, for any element a,

(1)
$$a + 0 = 0 + a = a, a1 = 1a = a.$$

Let

$$(x_1, x_2, \cdots, x_m; a_1, a_2, \cdots, a_m)$$

denote a unit-zero function with respect to the sequence of m elements, a_1, \dots, a_m of K, that is, a function $f(x_1, x_2, \dots, x_m)$ of m elements x_1, x_2, \dots, x_m such that f = 1 or 0, according as the equalities, $x_i = a_i$, $(i = 1, 2, \dots, m)$, all hold or do not all hold. Accordingly, (x; a) will denote a unit-zero function with respect to a, that is, a function f(x) such that f(x) = 1 or 0, according as x = a or $x \neq a$. Then the following propositions (2)-(4) evidently hold:

(2)
$$(x_1, x_2, \cdots, x_m; a_1, a_2, \cdots, a_m) = (x_1; a_1)(x_2; a_2) \cdots (x_m; a_m);$$

(3) $a(x_1, x_2, \cdots, x_m; a_1, a_2, \cdots, a_m) = a \text{ or } 0,$

according as
$$x_i = a_i$$
, $(i = 1, 2, \dots, m)$, all hold or do not all hold;

(4)
$$a(x_1, x_2, \dots, x_m; a_1, a_2, \dots, a_m)$$

+ $b(x_1, x_2, \dots, x_m; b_1, b_2, \dots, b_m) = a$, or b, or 0,

according as $x_i = a_i$ all hold, or $x_i = b_i$ all hold, or neither $x_i = a_i$ all hold nor $x_i = b_i$ all hold, $(i = 1, 2, \dots, m; a_i \neq b_i$ for some i). In a previous paper† propositions (1)–(4) were made the basis of a method of obtaining arithmetic representations of arbitrary operations and relations in a finite class of elements. Since

^{*} Presented to the Society, April 11, 1931.

[†] B. A. Bernstein and N. Debely, A practical method for the modular representation of finite operations and relations, this Bulletin, vol. 38 (1932), pp. 110-114.