QUADRATIC PARTITIONS: PAPER IV

BY E. T. BELL

1. Identity of Degree 5. For the preceding note, see this Bulletin, vol. 38, p. 569. The degree of a ϑ, ϕ identity is the degree of the identity in functions ϑ, ϕ. In II we discussed an identity of degree 4 . Here we consider an identity of degree 5 whose equivalent in parity functions refers to $F(w, z, u, v)$ as in II. The identity is one of many of degree 5 by Gage.

Denote by $\Psi(w, z, u, v)$ the function

$$
\phi_{111}\left(\frac{w+z}{2}, u\right) \vartheta_{3}^{2}\left(\frac{v-z}{2}\right) \vartheta_{3}{ }^{2}\left(\frac{w-u}{2}\right)
$$

Then

$$
\begin{aligned}
\Psi(w, z, u, v)+ & \Psi(w,-z,-u,-v) \\
& -\Psi(w,-z, v, u)-\Psi(w, z,-v,-u) \equiv 0
\end{aligned}
$$

is an identity in w, z, u, v. The required expansions are

$$
\begin{aligned}
\vartheta_{3}(x) & =\sum q^{\nu^{2}} \cos 2 \nu x, \text { and } \\
\phi_{111}(x, y) & =\operatorname{ctn} x+\operatorname{ctn} y+4 \sum q^{2 n}\left[\sum \sin 2(d x+\delta y)\right] .
\end{aligned}
$$

For the notation in the above and in what follows, refer to I.
2. Equivalent of Ψ-Identity. To apply the formulas in I, §7, to the reduction of the ctn terms, make the substitution (w, z) $\rightarrow(x+y, x-y)$, and in the result apply

$$
(x, y) \rightarrow((w+z) / 2,(w-z) / 2) .
$$

Proceeding as in II, we find the following. The partitions are

$$
n=2 d \delta+\nu_{1}^{2}+\nu_{2}^{2}+\nu_{3}^{2}+\nu_{4}^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}{ }^{2} .
$$

Write

$$
\begin{aligned}
\lambda_{1} & \equiv \nu_{1}+\nu_{2}, \lambda_{2} \equiv \nu_{3}+\nu_{4}, \alpha_{1} \equiv a_{1}+a_{2}, \alpha_{2} \equiv a_{3}+a_{4} \\
\sigma_{1} & \equiv \alpha_{1}+\alpha_{2}, \sigma_{2} \equiv \alpha_{1}-\alpha_{2}, \sigma_{1, r} \equiv \sigma_{2, r}+2 \sigma_{2} \\
\sigma_{2, r} & \equiv 2 r-1+e(n)-\sigma_{2} ; S \equiv\left[\frac{1}{2}\left(\left|\sigma_{1}\right|-1\right)\right], A \equiv\left[\frac{1}{2}\left(\left|\alpha_{2}\right|-1\right)\right] .
\end{aligned}
$$

Then the identity gives

