ON THE COMPACTNESS OF THE SPACE L_n

BY J. D. TAMARKIN*

1. Introduction. Let R_n be the *n*-dimensional euclidean space and $L_p(p>1)$ the function-space consisting of all the functions f(x) defined and measurable over R_n , and such that the integrals

$$\int_{R_n} \left| f(x) \right|^p dx < \infty,$$

while the metric of the space L_p is defined, as usual, by the "distance"

$$||f|| \equiv \left[\int_{R_n} |f(x)|^p dx \right]^{1/p}.$$

All the notions of boundedness, convergence, limits, approximations, etc., used in this note will be relative to this metric, unless explicitly specified to the contrary.

Let $S(x, \epsilon)$ be the *n*-dimensional sphere with center at x and radius ϵ . We designate by $V(\epsilon)$ the volume of $S(x, \epsilon)$, and by

(1)
$$f_{\epsilon}(x) \equiv \frac{1}{V(\epsilon)} \int_{S(x,\epsilon)} f(y) dy$$

the moving average of f(x). Finally, let C_N be the n-dimensional cube, with center at the origin and edges of length 2N parallel to the coordinate axes. We set

(2)
$$f^{N}(x) = \begin{cases} f(x) \text{ when } x \text{ is in } C_{N}, \\ 0 \text{ elsewhere.} \end{cases}$$

A set \mathfrak{F} of elements of L_p is called *compact* if every subset of \mathfrak{F} contains at least one convergent sequence. In a recent paper Kolmogoroff† has derived necessary and sufficient conditions in order that \mathfrak{F} be compact, under the restriction that all the elements of \mathfrak{F} vanish outside of a fixed bounded measurable point

^{*} Presented to the Society, October 31, 1931.

[†] Göttinger Nachrichten, 1931, pp. 60-63.