ON SURFACES IN SPACE OF r DIMENSIONS

BY B. C. WONG
Consider a surface F^{n} of order n in r-space. Let it be the complete intersection of $q \leqq r-2$ varieties $V_{k_{1}}^{n_{1}}, V_{k_{0}}^{n_{2}}, \cdots, V_{k_{q}}^{n_{q}}$ of orders $n_{1}, n_{2}, \cdots, n_{q}$ and of dimensions $k_{1}, k_{2}, \cdots, k_{q}$, respectively, where

$$
\begin{align*}
& 3 \leqq k_{1}, k_{2}, \cdots, k_{q} \leqq r-2 \tag{A}\\
& k_{1}+k_{2}+\cdots+k_{q}=r(q-1)+2 .
\end{align*}
$$

Project F^{n} on an S_{3}. The projection $F^{\prime n}$ has a number of characteristics of which we note the following six: n, its order; a, the order of its tangent cone; b, the order of its double curve; j, the number of its pinch-points; t, the number of its triple points; and m, its class. If we project F^{n} on an S_{4}, the projection has a finite number, d, of improper double points. We shall call these seven characteristics, of which n, a, t, m are often regarded as essential, the characteristics of F^{n}, and they are known to satisfy the following relations:*

$$
\begin{align*}
a+2 b & =n(n-1), \quad j+2 d=n(n-1)-a, \\
j & =\frac{1}{4}[a(3 n-4)-n(n-1)(n-2)+6 t-2 m], \tag{B}\\
d & =\frac{1}{8}[n(n-1)(n+2)-3 a n-6 t+2 m]
\end{align*}
$$

For $r=5, q=3, k_{1}=k_{2}=k_{3}=4, F^{n}$ is the intersection of three hypersurfaces in S_{5}. Formulas for its characteristics are known \dagger and they are symmetric functions of the orders of the hypersurfaces. In this note we present analogous formulas for the same characteristics of F^{n} for r general and for $q \leqq r-2$. As the method of obtaining these formulas is familiar and has been applied by the writer time and again to similar enumerative problems, \ddagger we shall here omit all demonstration.

[^0]
[^0]: * Severi, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a'suoi punti tripli apparenti, Rendiconti di Palermo, vol. 15 (1901), pp. 33-51.
 \dagger B. C. Wong, On surfaces in spaces of four and five dimensions, this Bulletin, vol. 36 (1930), pp. 681-686. Opportunity is here taken to correct an error in the formula for $T^{\prime \prime}$ on page 685 of this paper. The formula should read

 $$
 T^{\prime \prime}=\frac{1}{2} \lambda \mu \nu(\lambda-1)(\mu-1)(\nu-1)(\mu \nu+\nu \lambda+\lambda \mu-2 \lambda-2 \mu-2 \nu)
 $$

 \ddagger B. C. Wong, loc. cit., and also the paper On the number of apparent double points of r-space curves, this Bulletin, vol. 37 (1931), pp. 421-423.

