NOTE ON THE DISCRIMINANT MATRIX OF AN ALGEBRA*

BY L. E. BUSH

The purpose of this note is to extend MacDuffee's normal basis \dagger to a general linear associative algebra.

Let \mathfrak{A} be a linear associative algebra over an infinite field \mathfrak{F}, with the basis $e_{1}, e_{2}, \cdots, e_{n}$, and let the constants of multiplication be denoted by $c_{i j k}$. Let $T_{1}=\left(\tau_{r s}\right)$ be the first discriminant matrix of \mathfrak{A}, and let $d_{h}=\sum_{k} c_{h k k}$. Then $\tau_{r s}=\tau_{s r}=\sum_{h} c_{s r h} d_{h}$.

If \mathfrak{H} is nilpotent, $d_{i}=0,(i=1,2, \cdots, n), \ddagger$ and $T_{1}=0$. We now suppose that \mathfrak{H} is non-nilpotent and therefore possesses a principal idempotent element e_{1}. \S Let \mathfrak{N} be the radical of \mathfrak{N}, and \mathfrak{B} be the set of elements x of \mathfrak{A} for which $e_{1} x=0$. Then $\mathfrak{B}<\mathfrak{N}$. \boldsymbol{T} It is easily shown that $\mathfrak{Z}=e_{1} \mathfrak{N}+\mathfrak{B}$, where $e_{1} \mathfrak{Z}$ and \mathfrak{B} are algebras whose intersection is zero. Let $e_{1} \mathfrak{H}=R+\bar{N}$, where $\overline{\mathfrak{R}}$ is the radical of $e_{1} \mathfrak{Z}$ and \mathfrak{R} is a linear system supplementary to $\overline{\mathfrak{R}}$ in $e_{1} \mathfrak{N}$. It is not difficult to show that $\mathfrak{N}=\overline{\mathfrak{R}}+\mathfrak{B}$.\| We may therefore select the basis of \mathfrak{H} as $e_{1}, e_{2}, \cdots, e_{n}$, so that e_{1} is the principal idempotent selected above, $e_{1}, e_{2}, \cdots, e_{\sigma}$ is a basis for $R, e_{\sigma+1}$, $e_{\sigma+2}, \cdots, e_{\rho}$ a basis for $\overline{\mathfrak{R}}$, and $e_{\rho+1}, e_{\rho+2}, \cdots, e_{n}$ a basis for \mathfrak{B}. Then $d_{i}=0,(i>\sigma),{ }^{* *}$ and $d_{1}=\sum_{k} c_{1 k k}=\rho>0$, since if x is in $e_{1} \mathfrak{Z}$, we have $e_{1} x=x$.

Direct computation shows that if $e_{1}, e_{2}, \cdots, e_{n}$ are subjected to a transformation, $e_{i}^{\prime}=\sum_{j} a_{i j} e_{j}$, the new d 's are given by $d_{i}^{\prime}=\sum_{j} a_{i j} d_{j}, \quad(i=1,2, \cdots, n)$. Hence if we make the nonsingular transformation

[^0]
[^0]: * Presented to the Society, November 28, 1931.
 \dagger C. C. MacDuffee, Transactions of this Society, vol. 33, p. 427, proves Theorems 1 and 2 only for algebras with a principal unit. The terminology and notation in this paper are in agreement with that of MacDuffee.
 \ddagger L. E. Dickson, Algebren und ihre Zahlentheorie, 1927, p. 108.
 § Dickson, loc. cit., p. 100.
 【 Dickson, loc. cit., p. 100.
 || This relation follows directly from Dickson, loc. cit., p. 100, Theorem 5, or it can be proved independently.
 ** Dickson, loc. cit., p. 108.

