NOTE ON THE DISCRIMINANT MATRIX OF AN ALGEBRA*

BY L. E. BUSH

The purpose of this note is to extend MacDuffee's normal basis[†] to a general linear associative algebra.

Let \mathfrak{A} be a linear associative algebra over an infinite field \mathfrak{F} , with the basis e_1, e_2, \cdots, e_n , and let the constants of multiplication be denoted by c_{ijk} . Let $T_1 = (\tau_{rs})$ be the first discriminant matrix of \mathfrak{A} , and let $d_h = \sum_k c_{hkk}$. Then $\tau_{rs} = \tau_{sr} = \sum_k c_{srh} d_h$.

If \mathfrak{A} is nilpotent, $d_i = 0$, $(i = 1, 2, \dots, n)$, \ddagger and $T_1 = 0$. We now suppose that \mathfrak{A} is non-nilpotent and therefore possesses a principal idempotent element e_1 . \S Let \mathfrak{N} be the radical of \mathfrak{A} , and \mathfrak{B} be the set of elements x of \mathfrak{A} for which $e_1x = 0$. Then $\mathfrak{B} < \mathfrak{N}$. \P It is easily shown that $\mathfrak{A} = e_1 \mathfrak{A} + \mathfrak{B}$, where $e_1 \mathfrak{A}$ and \mathfrak{B} are algebras whose intersection is zero. Let $e_1 \mathfrak{A} = \mathfrak{L} + \mathfrak{M}$, where \mathfrak{M} is the radical of $e_1 \mathfrak{A}$ and \mathfrak{L} is a linear system supplementary to \mathfrak{M} in $e_1 \mathfrak{A}$. It is not difficult to show that $\mathfrak{M} = \mathfrak{M} + \mathfrak{B}$. \parallel We may therefore select the basis of \mathfrak{A} as e_1, e_2, \dots, e_n , so that e_1 is the principal idempotent selected above, $e_1, e_2, \dots, e_\sigma$ is a basis for \mathfrak{L} , $e_{\sigma+1}$, $e_{\sigma+2}, \dots, e_{\rho}$ a basis for \mathfrak{M} , and $e_{\rho+1}, e_{\rho+2}, \dots, e_n$ a basis for \mathfrak{B} . Then $d_i = 0, (i > \sigma)$,** and $d_1 = \sum_k c_{1kk} = \rho > 0$, since if x is in $e_1 \mathfrak{A}$, we have $e_1 x = x$.

Direct computation shows that if e_1, e_2, \dots, e_n are subjected to a transformation, $e'_i = \sum_j a_{ij}e_j$, the new d's are given by $d'_i = \sum_j a_{ij}d_j$, $(i=1, 2, \dots, n)$. Hence if we make the nonsingular transformation

^{*} Presented to the Society, November 28, 1931.

[†] C. C. MacDuffee, Transactions of this Society, vol. 33, p. 427, proves Theorems 1 and 2 only for algebras with a principal unit. The terminology and notation in this paper are in agreement with that of MacDuffee.

[‡] L. E. Dickson, Algebren und ihre Zahlentheorie, 1927, p. 108.

[§] Dickson, loc. cit., p. 100.

[¶] Dickson, loc. cit., p. 100.

 $[\]parallel$ This relation follows directly from Dickson, loc. cit., p. 100, Theorem 5, or it can be proved independently.

^{**} Dickson, loc. cit., p. 108.