For, the given identity implies

$$
a_{2 r}+b_{2 r}+\cdots+c_{2 r}=0, \quad(r=0,1, \cdots)
$$

and therefore

$$
\begin{gathered}
p_{0}\left(a_{0}+b_{0}+\cdots+c_{0}\right)+p_{2}\left(a_{2}+b_{2}+\cdots+c_{2}\right)+\cdots \\
+p_{2 s}\left(a_{2 s}+b_{2 s}+\cdots+c_{2 s}\right)=0
\end{gathered}
$$

which is the stated conclusion.
California Institute of Technology

ON SYMMETRIC PRODUCTS OF TOPOLOGICAL SPACES*

BY KAROL BORSUK AND STANISLAW ULAM

1. Introduction. This paper is devoted to an operation that is defined for an arbitrary topological \dagger space E and is analogous to the operation of constructing the combinatorial product spaces. \ddagger We shall be concerned with the topological properties of point sets defined by means of the above operation when executed on the segment $0 \leqq x \leqq 1$.

Let E be an arbitrary topological space. Let E^{n} denote the nth topological product of the space E, that is, the space whose elements are ordered systems $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ of points $x_{i} \in E$. By a neighborhood of a point $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, we understand the set of all systems ($x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}$), where x_{i}^{\prime} belongs to a neighborhood u_{i} of the point x_{i} in the space $E . \ddagger$

The operation with which we are concerned in this paper consists in constructing a space which we shall call the nth symmetric product of the space E and denote by $E(n)$. Its elements are non-ordered systems of n points (which may be different or not) belonging to E. Two systems differing only by the order or multiplicity of elements are considered identical. A non-ordered system or simply a set consisting of n points x_{1}, \cdots, x_{n} from the space E will be denoted by $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. If u_{i} is a neighborhood of the point x_{i} in the space E, then the set of all systems

[^0]
[^0]: * The definition of symmetric products is given below.
 \dagger In the sense of Hausdorff, Grundzïge der Mengenlehre, p. 228.
 \ddagger See, for example, F. Hausdorff, Grundzüge der Mengenlehre, p. 102.

