MAPS OF CERTAIN CYCLIC INVOLUTIONS ON TWO-DIMENSIONAL CARRIERS

BY W. R. HUTCHERSON

1. Introduction. The following paper derives the fundamental properties of the involutions on an algebraic surface which have but a finite number of invariant points. Except for a few particular cases, they cannot be regarded as subcases of those having a curve of invariant points; they require one more equation for their definition, analogous to the singular correspondences on algebraic curves. They exist only on surfaces having particular moduli.

2. Discussion of I_n . Consider two surfaces F(x) = 0 and $\Phi(x') = 0$ with the property that any point P on F(x) = 0 uniquely fixes a point P' on $\Phi(x') = 0$ and, conversely, the point P' fixes n points $P_1 \equiv P, P_2, \dots, P_n$ on F. There is thus set up an (n, 1) correspondence between the points of F = 0 and $\Phi = 0$. Now any one of the n points P_1, \dots, P_n on F = 0 definitely determines the whole group of n points to which it belongs. Hence, it will be said that F contains an involution I_n of order n, and that this I_n belongs to $\Phi(x') = 0$.

There are two kinds of involutions; F may contain one or more curves, each point of which contains two or more coincidences of these n points $P_1, \dots, P_n, P_i = P_k$. Such curves are called *curves of coincidences*. The surface $\Phi(x') = 0$ then contains a locus of branch points in (1, 1) correspondence with the curve of coincidences on F. The other kind of involution is such that F has only a finite number of coincident points. Thus, $\Phi(x')$ has in this case exactly the same number of branch points.

If $\Phi(x') = 0$ is a rational surface, or a plane, I_n is said to be *rational*. If F(x) = 0 is rational, $\Phi(x') = 0$ must be rational.* The converse is not true.

In this paper only I_n on F(x) = 0 with a finite number of coincident points will be considered. Such an I_n can be gener-

^{*} Castelnuovo, Mathematische Annalen, vol. 44 (1894), pp. 125-155.