MAPS OF CERTAIN CYCLIC INVOLUTIONS ON TWO-DIMENSIONAL CARRIERS

BY W. R. HUTCHERSON

1. Introduction. The following paper derives the fundamental properties of the involutions on an algebraic surface which have but a finite number of invariant points. Except for a few particular cases, they cannot be regarded as subcases of those having a curve of invariant points; they require one more equation for their definition, analogous to the singular correspondences on algebraic curves. They exist only on surfaces having particular moduli.
2. Discussion of I_{n}. Consider two surfaces $F(x)=0$ and $\Phi\left(x^{\prime}\right)=0$ with the property that any point P on $F(x)=0$ uniquely fixes a point P^{\prime} on $\Phi\left(x^{\prime}\right)=0$ and, conversely, the point P^{\prime} fixes n points $P_{1} \equiv P, P_{2}, \cdots, P_{n}$ on F. There is thus set up an $(n, 1)$ correspondence between the points of $F=0$ and $\Phi=0$. Now any one of the n points P_{1}, \cdots, P_{n} on $F=0$ definitely determines the whole group of n points to which it belongs. Hence, it will be said that F contains an involution I_{n} of order n, and that this I_{n} belongs to $\Phi\left(x^{\prime}\right)=0$.

There are two kinds of involutions; F may contain one or more curves, each point of which contains two or more coincidences of these n points $P_{1}, \cdots, P_{n}, P_{i}=P_{k}$. Such curves are called curves of coincidences. The surface $\Phi\left(x^{\prime}\right)=0$ then contains a locus of branch points in $(1,1)$ correspondence with the curve of coincidences on F. The other kind of involution is such that F has only a finite number of coincident points. Thus, $\Phi\left(x^{\prime}\right)$ has in this case exactly the same number of branch points.

If $\Phi\left(x^{\prime}\right)=0$ is a rational surface, or a plane, I_{n} is said to be rational. If $F(x)=0$ is rational, $\Phi\left(x^{\prime}\right)=0$ must be rational.* The converse is not true.

In this paper only I_{n} on $F(x)=0$ with a finite number of coincident points will be considered. Such an I_{n} can be gener-

[^0]
[^0]: * Castelnuovo, Mathematische Annalen, vol. 44 (1894), pp. 125-155.

