A REMARK CONCERNING THE NECESSARY CONDITION OF WEIERSTRASS*

BY E. J. MCSHANE \dagger

Let us consider a class Ω of rectifiable curves C lying in a point set A of n-dimensional space, and an integral $F(C)=\int_{c} f\left(x, x^{\prime}\right) d s$, where $x=\left(x^{1}, \cdots, x^{n}\right)$ and s connotes that we use the length of arc as parameter. Suppose that a certain curve $C: x=x(s)$ minimizes $F(C)$ in Ω, and denote by L the set of points of C which are interior to A and of indifference with respect to Ω and A. Then for almost all points of L we have \ddagger $E\left(x(s), x^{\prime}(s), \bar{x}^{\prime}\right) \geqq 0$ for all sets of numbers \bar{x}^{\prime}. Given now a particular point $x\left(s_{0}\right)$ of L; when can we say that the inequality holds at $x\left(s_{0}\right)$?

It has already been shown§ that the inequality holds if $x^{\prime}\left(s_{0}\right)$ exists, $\Sigma\left[x^{i^{\prime}}\left(s_{0}\right)\right]^{2}>0$, and the $x^{i^{\prime}}(s)$ are all approximately continuous at s_{0}. We will now show that the inequality also holds if $\Sigma\left(x^{i^{\prime}}\left(s_{0}\right)\right)^{2}=1$. (As is well known, this sum never exceeds 1 , and is equal to 1 almost everywhere.)

Suppose then that $\Sigma\left[x^{i^{\prime}}\left(s_{0}\right)\right]^{2}=1$ and that in contradiction to our statement there exists an \bar{x}^{\prime} such that $E\left(x\left(s_{0}\right), x^{\prime}\left(s_{0}\right), \bar{x}^{\prime}\right)$ $=-2 k<0$. Denote by $\alpha(s)$ the angle between $x^{\prime}(s)$ and $x^{\prime}\left(s_{0}\right)$. The function

$$
\begin{aligned}
\phi(s) & =\frac{d}{d s}\left[\sum x^{i}(s) x^{i^{\prime}}\left(s_{0}\right)\right]=\sum x^{i^{\prime}}(s) x^{i^{\prime}}\left(s_{0}\right) \\
& =\left\{\sum\left[x^{i^{\prime}}(s)\right]^{2}\right\}^{1 / 2}\left\{\sum\left[x^{i^{\prime}}\left(s_{0}\right)\right]^{2}\right\}^{1 / 2} \cos \alpha(s)
\end{aligned}
$$

is defined for almost all values of s, and $|\phi(s)| \leqq|\cos \alpha(s)|$. By the continuity of E, we can find positive numbers ϵ, δ such that $E\left(x(s), x^{\prime}(s), \bar{x}^{\prime}\right)<-k$ for all s such that $\left|s-s_{0}\right| \leqq \epsilon, \phi(s) \geqq 1-\delta ;$ and if ϵ be small enough, $x(s)$ will be in L. But $\phi\left(s_{0}\right)=1$ and $\phi(s)$

[^0]
[^0]: * Presented to the Society, April 3, 1931.
 \dagger National Research Fellow.
 \ddagger L. Tonelli, Fondamenti di Calcolo delle Variazioni, vol. 2, p. 87. E. J. McShane, On the necessary condition of Weierstrass, etc., Annals of Mathematics, vol. 32.
 § E. J. McShane, loc. cit.

