A RELATIONSHIP IN SPHERICAL HARMONICS

BY J. H. WEBB

It is known that a solid spherical harmonic about one set of axes can be expressed as a solid spherical harmonic with constant coefficients about a new set of axes whose origin is displaced from that of the first. A new relationship has been found for making this transformation and a proof is herein given.

Consider the two sets of cartesian coordinates x, y, z and x_{1}, y_{1}, z_{1}, whose origins O and O_{1} are separated by a distance h. Let the two axes x and x_{1} be coincident, but let the positive sense of the two axes be opposite. Consider the point S which has the two sets of polar coordinates defined by the equations

$$
\begin{array}{ll}
x_{1}=\rho_{1} \cos \theta_{1}=\rho_{1} \mu_{1}, & x=\rho \cos \theta=\rho \mu \\
y_{1}=\rho_{1} \sin \theta_{1} \sin \phi_{1}, & y=\rho \sin \theta \sin \phi \\
z_{1}=\rho_{1} \sin \theta_{1} \cos \phi_{1}, & z=\rho \sin \theta \cos \phi
\end{array}
$$

The transformation to be obtained may be expressed symbolically as follows:

$$
\begin{equation*}
\sum_{m=0}^{\infty} \rho_{1}^{-(m+1)} Y_{m}\left(\mu_{1}, \phi_{1}\right)=\sum_{m=0}^{\infty} f_{m}(\rho) Y_{m}(\mu, \phi) \tag{1}
\end{equation*}
$$

in which Y_{m} signifies the usual spherical harmonic. Such a transformation has been given previously by B. Datta.* The new relationship which has been found to give the transformation (1) and which appears to have been unnoticed before is

$$
\begin{equation*}
\frac{P_{m}^{n}\left(\mu_{1}\right)}{\rho_{1}^{m+1}}=a_{(m-n)}\left(1-\mu^{2}\right)^{n / 2} \frac{\partial^{m-n}}{\partial h^{m-n}}\left(\frac{1}{h^{n}} \frac{\partial^{n}}{\partial \mu^{n}} \frac{1}{\rho_{1}}\right) \tag{2}
\end{equation*}
$$

in which $a_{(m-n)}$ designates the term $(-1)^{m-n} /(m-n)!$. A proof of this relationship follows.

Relative to the partial differentiation on the right side of (2), ρ_{1} is to be expressed in terms of ρ, μ and h. At certain stages of the calculation it will be convenient to express ρ_{1} by means of the equation

[^0]
[^0]: * Tôhoku Mathematical Journal, vol. 15 (1919), p. 166.

