ON COMPLEX METHODS OF SUMMABILITY*

BY R. P. AGNEW \dagger

1. Introduction. When a method of summability \ddagger evaluates a complex sequence $\left\{s_{n}\right\}$ to L, it is of interest to know if that method evaluates $\left\{\mathcal{R}\left(s_{n}\right)\right\}$ to $\mathcal{R}(L)$, if it evaluates $\left\{\mathcal{J}\left(s_{n}\right)\right\}$ to $\mathcal{J}(L)$, and if it evaluates $\left\{\bar{s}_{n}\right\}$ to $\bar{L} . \S$ For linear methods of summability, $\|$ these three questions are easily shown to be equivalent.

To simplify our discussion, we introduce the two following definitions. A method of summability has property A if, corresponding to each sequence $\left\{s_{n}\right\}$ which it evaluates, the sequence $\left\{R\left(s_{n}\right)\right\}$ is evaluated to the real part of the value of $\left\{s_{n}\right\}$. A method of summability has property B if, corresponding to each bounded sequence $\left\{s_{n}\right\}$ which it evaluates, the sequence $\left\{R\left(s_{n}\right)\right\}$ is evaluated to the real part of the value of $\left\{s_{n}\right\}$.
2. Failure of Property B. That a linear regular method may fail to have property B, and hence a fortiori fail to have property A, follows easily from a consideration of the transformation $\sqrt{1}$

$$
\begin{equation*}
\sigma_{n}=\frac{1}{2}\left[1-(-1)^{n} i\right] s_{n-1}+\frac{1}{2}\left[1+(-1)^{n} i\right] s_{n} \tag{1}
\end{equation*}
$$

which assigns to a given sequence $\left\{s_{n}\right\}$ the value $\lim \sigma_{n}$ when this limit exists. The bounded sequence $\left\{x_{n}\right\}$ defined by $x_{n}=1$ $+(-1)^{n} i$ is evaluated to 0 by (1); but $\left\{R\left(x_{n}\right)\right\}$ is evaluated to $1,\left\{\mathcal{J}\left(x_{n}\right)\right\}$ is evaluated to -1 , and $\left\{\bar{x}_{n}\right\}$ is evaluated to 2 . This

* Presented to the Society, June 13, 1931.
\dagger National Research Fellow.
\ddagger By a method of summability, we mean simply a rule which assigns to each given sequence (or series) of complex numbers either no value or a single value. For example, if we agree to assign to the complex sequence $\left\{s_{n}\right\}$, where $s_{n}=u_{n}+i v_{n}, u_{n}$ and v_{n} real, the value $3+4 i$ if $v_{n} \neq 0$ for some n and the value 3 if $v_{n}=0$ for all n, we have a method of summability.
\S If $w=u+i v$, where u and v are real, we use $R(w), Y(w)$, and \bar{w} to denote respectively $u, i v$, and the conjugate $u-i v$ of w.
|| For definitions of linearity, regularity, etc., and for necessary and sufficient conditions for regularity, see an expository paper by W. A. Hurwitz, this Bulletin, vol. 28 (1922), pp. 17-36, and the references there given.

If Corresponding to a given sequence $s_{1}, s_{2}, s_{3}, \cdots$, we define $s_{0}=0$.

