INVERSE TERNARY CONTINUED FRACTIONS

BY D. N. LEHMER

In Jacobi's extension of the continued fraction algorithm* we are concerned with three series of numbers given by the recursion formulas

$$
\begin{aligned}
& A_{n}=q_{n} A_{n-1}+p_{n} A_{n-2}+A_{n-3}, \\
& B_{n}=q_{n} B_{n-1}+p_{n} B_{n-2}+B_{n-3}, \\
& C_{n}=q_{n} C_{n-1}+p_{n} C_{n-2}+C_{n-3},
\end{aligned}
$$

with initial values $1,0,0$ for $A ; 0,1,0$ for B, and $0,0,1$ for C. We have called this series of numbers $\left(A_{n}, B_{n}, C_{n}\right)$ the convergent sets, and the series of numbers $\left(p_{n}, q_{n}\right)$ the partial quotient sets of a ternary continued fraction. \dagger It is well known that if the partial quotient sets recur periodically the ratios $A_{n} / B_{n}, A_{n} / C_{n}$ and B_{n} / C_{n} approach cubic irrationalities except in certain special cases where they approach quadratic irrationalities \ddagger or where they approach no limit at all. The cubic irrationalities when they exist are connected by a linear fractional relation with the roots of the characteristic cubic

$$
\left|\begin{array}{ccc}
A_{k-2}-\rho & B_{k-2} & C_{k-2} \\
A_{k-1} & B_{k-1}-\rho & C_{k-1} \\
A_{k} & B_{k} & C_{k}-\rho
\end{array}\right|=0
$$

connected with the purely periodic ternary continued fraction ($p_{1}, q_{1} ; p_{2}, q_{2} ; \cdots ; p_{k}, q_{k}$) formed of those partial quotient pairs that recur. This characteristic cubic we write $\rho^{3}-M \rho^{2}+N \rho$ $-1=0$, where $M=A_{k-2}+B_{k-1}+C_{k}$, and
$N=A_{k-2} B_{k-1}-A_{k-1} B_{k-2}+B_{k-1} C_{k}-B_{k} C_{k-1}+C_{k} A_{k-2}-A_{k} C_{k-2}$.
We shall confine ourselves in what follows to purely periodic

[^0]
[^0]: * Jacobi, Werke, vol. VI, pp. 385-426.
 \dagger Proceedings of the National Academy of Sciences, vol. 4 (1918), p. 360.
 \ddagger J. B. Coleman, American Journal of Mathematics, vol. 52, No. 4, October, 1930.

