SOME THEOREMS ON PLANE CURVES

BY W. V. PARKER

In applying Abel's theorem to hyperelliptic integrals, we are interested in the intersections of certain curves with a curve C of the type $y^{2}=f(x)$, where $f(x)$ is a polynomial. The functions used in the following are all polynomials of degree indicated by their subscripts. If $f_{n}(x) \equiv f_{k}(x) f_{n-k}(x)$ we may without any loss of generality assume that $n \geqq k \geqq n / 2$ and this assumption will be made throughout.

Lemma. If C is the curve $y^{2}=f_{n}(x) \equiv f_{k}(x) f_{n-k}(x), c_{1}$ the curve $y=f_{k}(x)$ and c_{2} the curve $y=f_{n-k}(x)$, then all the finite points of intersection of c_{1} and c_{2} are on C, and the curve S whose equation is $y=\left[f_{k}(x)+f_{n-k}(x)\right] / 2$ is tangent to C at each of these k points.

Suppose (α, β) is any one of the k points of intersection of c_{1} and c_{2}; then $\beta=f_{k}(\alpha)$ and $\beta=f_{n-k}(\alpha)$ and therefore $\beta^{2}=f_{k}(\alpha) f_{n-k}(\alpha)=f_{n}(\alpha)$, that is (α, β) is on C. Obviously S passes through the k points of interesection of c_{1} and c_{2} and hence meets C in these k points. Eliminating y from the equations of S and C we get

$$
\left[\frac{f_{k}(x)+f_{n-k}(x)}{2}\right]^{2}-f_{k}(x) f_{n-k}(x) \equiv\left[\frac{f_{k}(x)-f_{n-k}(x)}{2}\right]^{2}=0
$$

as the equation giving the abscissas of the $2 k$ points of intersection of S and C. Since the left hand side of this equation is a perfect square each abscissa is counted twice, and therefore since, in S, y is a one-valued function of x, S is tangent to C at each of these k points.

As an immediate consequence of this lemma we have the following result.

Theorem 1. If C is the curve $y^{2}=\phi_{n}(x)$, where $\phi_{n}\left(e_{i}\right)=0$, $(i=1, \cdots, n)$, and $(\alpha, \beta),(\beta \neq 0)$, is a point on C, and c_{1} is the curve of the form $y=\phi_{k}(x)$ determined by (α, β) and any k of the points ($e_{i}, 0$), and c_{2} is the curve of the form $y=\phi_{n-k}(x)$ determined by (α, β) and the remaining $n-k$ of the points $\left(e_{i}, 0\right)$, then c_{1} and

