SUMS OF FOUR OR MORE VALUES OF $\mu x^{2}+\nu x$ FOR INTEGERS x^{*}

BY GORDON PALL \dagger

1. Introduction. My object is to prove the following theorem.

Theorem 1. Let $0<\nu<\mu, f(x)=\mu x^{2}+\nu x$. Let T denote the table of all sums of four values of $f(x)$ for integers x arranged in order of magnitude. The largest gap between consecutive entries of T is

$$
\begin{equation*}
\mu-\nu, \text { if } \mu \geqq 3 \nu / 2 ; \quad 5 \nu-3 \mu, \text { if } \mu \leqq 3 \nu / 2 \tag{1}
\end{equation*}
$$

An immediate corollary is the following result.
Theorem 2. Let $0<\nu<\mu, s \geqq 4$. The largest gap in the table of all sums of s values of $f(x)$ for integers x is
(2) $\mu-\nu$, if $s \mu \geqq(s+2) \nu ;(s+1) \nu-(s-1) \mu$, if $s \mu \leqq(s+2) \nu$.

For, if $s \geqq 4$, we need only add $(s-4) f(-1)$ to every entry of T, notice that a gap $\mu-\nu$ actually occurs from $4 f(0)$ to $f(-1)$ $+3 f(0)$, that no gap greater than $\mu-\nu$ can exceed $5 \nu-3 \mu$ $-(s-4)(\mu-\nu)$, and that the last number actually occurs, when it is positive, as the gap from $s f(-1)$ to $f(1)+(s-1) f(0)$.

Let us now recall \ddagger that the only quadratic functions $q(x)$ which are integers $\geqq 0$ for every integer x, and which take the values 0 and 1 for certain integers x, are obtained from the function

$$
\begin{equation*}
\frac{1}{2} m x^{2}+\frac{1}{2}(m-2) x \tag{3}
\end{equation*}
$$

where m is a positive integer, by replacing x by $x-k$ or $k-x, k$ an integer. By Theorem 2, the table of all sums of s values of $q(x)$ possesses as its maximum gap the number 1 if $3 \leqq m \leqq s+2$, $m-(s+1)$ if $m \geqq s+2$. One corollary is that every integer $\geqq 0$ is a sum of $m-2$ values of (3) for integers x, all but four of which are 0 or 1 , at least if $m \geqq 6$; and of four values if $m=3,4,5$; (previously proved by Dickson).

[^0]
[^0]: * Presented to the Society, November 29, 1930.
 \dagger National Research Fellow in Mathematics, California Institute of Technology.
 \ddagger L. E. Dickson, this Bulletin, vol. 33 (1927), p. 714.

