SUMS OF FOUR OR MORE VALUES OF $\mu x^2 + \nu x$ FOR INTEGERS x^*

BY GORDON PALL[†]

1. Introduction. My object is to prove the following theorem.

THEOREM 1. Let $0 < \nu < \mu$, $f(x) = \mu x^2 + \nu x$. Let T denote the table of all sums of four values of f(x) for integers x arranged in order of magnitude. The largest gap between consecutive entries of T is

(1)
$$\mu - \nu$$
, if $\mu \ge 3\nu/2$; $5\nu - 3\mu$, if $\mu \le 3\nu/2$.

An immediate corollary is the following result.

THEOREM 2. Let $0 < \nu < \mu$, $s \ge 4$. The largest gap in the table of all sums of s values of f(x) for integers x is

(2)
$$\mu - \nu$$
, if $s\mu \ge (s+2)\nu$; $(s+1)\nu - (s-1)\mu$, if $s\mu \le (s+2)\nu$.

For, if $s \ge 4$, we need only add (s-4)f(-1) to every entry of T, notice that a gap $\mu - \nu$ actually occurs from 4f(0) to f(-1)+3f(0), that no gap greater than $\mu - \nu$ can exceed $5\nu - 3\mu$ $-(s-4)(\mu - \nu)$, and that the last number actually occurs, when it is positive, as the gap from sf(-1) to f(1)+(s-1)f(0).

Let us now recall[‡] that the only quadratic functions q(x) which are integers ≥ 0 for every integer x, and which take the values 0 and 1 for certain integers x, are obtained from the function

(3)
$$\frac{1}{2}mx^2 + \frac{1}{2}(m-2)x$$
,

where *m* is a positive integer, by replacing x by x-k or k-x, k an integer. By Theorem 2, the table of all sums of s values of q(x) possesses as its maximum gap the number 1 if $3 \le m \le s+2$, m-(s+1) if $m \ge s+2$. One corollary is that every integer ≥ 0 is a sum of m-2 values of (3) for integers x, all but four of which are 0 or 1, at least if $m \ge 6$; and of four values if m=3, 4, 5; (previously proved by Dickson).

^{*} Presented to the Society, November 29, 1930.

[†] National Research Fellow in Mathematics, California Institute of Technology.

[‡] L. E. Dickson, this Bulletin, vol. 33 (1927), p. 714.