m_{n}, all other solutions being obtained from this solution by the addition of multiples of k.

Theorem 2. If the minimum equations of n finite square matrices m_{1} to m_{n} with elements in a field F are relatively prime then for any set of n polynomials h_{1}, \cdots, h_{m}, in F, a polynomial f may be found such that

$$
f\left(m_{i}\right)=h_{i}\left(m_{i}\right), \quad(i=1, \cdots, n)
$$

These theorems specialize to the above mentioned algebraic theorem since each x_{i} is a one by one matrix with minimum equation $\lambda-x_{i}=0$.

It should be noted that in the above discussion no restriction as to the field in which the elements of the matrices may lie is made, nor are the m_{i} necessarily of the same order.

The University of Wisconsin

PROBLEMS OF THE CALCULUS OF VARIATIONS WITH PRESCRIBED TRANSVERSALITY CONDITIONS*

BY LINCOLN LA PAZ \dagger

1. Introduction. Problems of the calculus of variations in the plane for which a prescribed relation exists between the directions of the extremals and the transversals were first studied by Stromquist \ddagger and Bliss. § Recently Rawles, $\|$ using a method based on properties of the Hilbert invariant integral, has given an interesting treatment of the analogous problem in (x, y_{1}, \cdots, y_{n})-space.

In the present paper the latter problem is attacked from a quite different point of view. I The method here used avoids a restrictive hypothesis made by Rawles with regard to the ex-

[^0]
[^0]: * Presented to the Society, August 29, 1929.
 \dagger National Research Fellow, 1928-1929.
 \ddagger Stromquist, Transactions of this Society, vol. 7 (1906), p. 181; Annals of Mathematics, (2), vol. 9 (1907), p. 57.
 § Bliss, Annals of Mathematics, (2), vol. 9 (1907), p. 134.
 || Rawles, Transactions of this Society, vol. 30 (1928), pp. 765-784.
 \| The possibility of approaching the problem from this viewpoint was suggested to the writer by G. A. Bliss.

