[October,

 m_n , all other solutions being obtained from this solution by the addition of multiples of k.

THEOREM 2. If the minimum equations of n finite square matrices m_1 to m_n with elements in a field F are relatively prime then for any set of n polynomials h_1, \dots, h_m , in F, a polynomial f may be found such that

$$f(m_i) = h_i(m_i), \qquad (i = 1, \cdots, n).$$

These theorems specialize to the above mentioned algebraic theorem since each x_i is a one by one matrix with minimum equation $\lambda - x_i = 0$.

It should be noted that in the above discussion no restriction as to the field in which the elements of the matrices may lie is made, nor are the m_i necessarily of the same order.

The University of Wisconsin

PROBLEMS OF THE CALCULUS OF VARIATIONS WITH PRESCRIBED TRANSVERSALITY CONDITIONS*

BY LINCOLN LA PAZ[†]

1. Introduction. Problems of the calculus of variations in the plane for which a prescribed relation exists between the directions of the extremals and the transversals were first studied by Stromquist[‡] and Bliss.[§] Recently Rawles, \parallel using a method based on properties of the Hilbert invariant integral, has given an interesting treatment of the analogous problem in (x, y_1, \dots, y_n) -space.

In the present paper the latter problem is attacked from a quite different point of view. \P The method here used avoids a restrictive hypothesis made by Rawles with regard to the ex-

^{*} Presented to the Society, August 29, 1929.

[†] National Research Fellow, 1928–1929.

[‡] Stromquist, Transactions of this Society, vol. 7 (1906), p. 181; Annals of Mathematics, (2), vol. 9 (1907), p. 57.

[§] Bliss, Annals of Mathematics, (2), vol. 9 (1907), p. 134.

^{||} Rawles, Transactions of this Society, vol. 30 (1928), pp. 765-784.

 $[\]P$ The possibility of approaching the problem from this viewpoint was suggested to the writer by G. A. Bliss.