GEODESIC COORDINATES OF ORDER r^*

BY A. D. MICHAL

1. Introduction. Let $\Gamma_{\alpha\beta}^i$ be a general symmetric affine connection \dagger and $\Gamma_{\beta_1\beta_2...\beta_r}^i$, $(r=3, \dots, p)$, the sequence of the first p-2 generalized symmetric affine connections defined by \ddagger

$$\Gamma^{i}_{\alpha\beta\gamma} = \frac{1}{3} P \left(\frac{\partial \Gamma^{i}_{\alpha\beta}}{\partial x^{\gamma}} - 2 \Gamma^{i}_{\sigma\alpha} \Gamma^{\sigma}_{\beta\gamma} \right)$$

and in general by the recurrence formula

$$\Gamma^{i}_{\alpha\beta\gamma\cdots\delta\epsilon}=\frac{1}{N}P\bigg(\frac{\partial\Gamma^{i}_{\alpha\beta\gamma\cdots\delta}}{\partial x^{\epsilon}}-\Gamma^{i}_{\sigma\beta\gamma\cdots\delta}\Gamma^{\sigma}_{\alpha\epsilon}-\cdots-\Gamma^{i}_{\alpha\beta\gamma\cdots\sigma}\Gamma^{\sigma}_{\delta\epsilon}\bigg).$$

The law of transformation of the affine connection $\Gamma^i_{\alpha\beta}$ is, as is well known,

$$\overline{\Gamma}^{\sigma}_{\alpha\beta}\frac{\partial x^{i}}{\partial \bar{x}^{\sigma}} = \Gamma^{i}_{\lambda\mu}\frac{\partial x^{\lambda}}{\partial \bar{x}^{\alpha}}\frac{\partial x^{\mu}}{\partial \bar{x}^{\beta}} + \frac{\partial^{2}x^{i}}{\partial \bar{x}^{\alpha}\partial \bar{x}^{\beta}}$$

while the generalized affine connections transform in accordance with the law§

$$\overline{\Gamma}^{\sigma}_{\alpha}\ldots_{\beta}\frac{\partial x^{i}}{\partial \bar{x}^{\sigma}} = \frac{\partial^{p}x^{i}}{\partial \bar{x}^{\alpha}} + \Gamma^{i}_{\lambda}\ldots_{\mu}\frac{\partial x^{\lambda}}{\partial \bar{x}^{\alpha}} \cdot \cdot \cdot \frac{\partial x^{\mu}}{\partial \bar{x}^{\beta}} + []$$

where the [] denotes the sum of terms, each of which involves a component $\overline{\Gamma}^{i}_{\rho\ldots\sigma}$ with less than p subscripts, that vanish with $\overline{\Gamma}^{i}_{\rho\alpha}, \cdots, \overline{\Gamma}^{i}_{\rho\ldots\sigma\beta}$.

2. Fundamental Theorems.

^{*} Presented to the Society, December 30, 1929.

[†] We assume that the reader is conversant with the tensor theory as presented by O. Veblen in his *Invariants of Quadratic Differential Forms*, Cambridge Tract, 1927.

[‡] O. Veblen and T. Y. Thomas, Transactions of this Society, vol. 25 (1923), p. 561.

[§] T. Y. Thomas, American Journal Mathematics, vol. 50 (1928), p. 518.