tion of this lemma to the case where the coefficients of the system (5) and the initial data (6) depend on a parameter. The interval $(0,1)$ of course can be replaced by an arbitrary interval (a, b), the initial values $\mathfrak{\eta}^{\prime}(0), \mathfrak{y}^{\prime \prime}(0)$ may be made distinct and the whole theory can be extended to systems of infinitely many equations, under suitable restrictions upon the matrices and vectors involved.

Brown University

ON THE NUMBER OF APPARENT MULTIPLE POINTS OF VARIETIES IN HYPERSPACE

BY B. C. WONG
By an apparent point of multiplicity s on a variety in r-space we mean a line which passes through a given point in r-space and meets the variety in s distinct points. In order that the number of such apparent s-fold points on a variety V_{x}^{m} of order m and of x dimensions be finite, we must have $r=s t+1$, $x=(s-1) t$, where t is the number less one of the hypersurfaces intersecting in the variety. In other words, the number of apparent s-fold points on a $V_{(s-1) t}^{m}$ which is the intersection of $t+1$ hypersurfaces in $S_{s t+1}$ is finite. It is the purpose of this paper to determine this number and also to determine its upper and lower limits.

We shall use the symbols $H_{s}^{(r)}, \bar{h}_{s}^{(r)}$ to denote respectively the maximum and minimum number of apparent s-fold points that a $V_{(s-1) t}^{m}$ of any order m in $S_{r}[r=s t+1]$ can have, and the symbol $h_{s}^{(r)}$ to denote the number of those that a $V_{(s-1) t}^{m}$ of order $m=n_{1} n_{2} \cdots n_{t+1}$, which is the complete intersection of $t+1$ hypersurfaces of orders $n_{1}, n_{2}, \cdots, n_{t+1}$ respectively, ordinarily has. Thus if $s=2, t=1$ and therefore $r=3$, a curve C^{m} in S_{3} can have at most

$$
\begin{equation*}
H_{2}{ }^{(3)}=(m-1)(m-2) / 2, \tag{1}
\end{equation*}
$$

and at least

$$
\begin{equation*}
\bar{h}_{2}^{(3)}=m(m-2) / 4, \quad \text { for } m \text { even } \tag{2}
\end{equation*}
$$

and

$$
\bar{h}_{2}^{(3)}=(m-1)^{2} / 4, \quad \text { for } m \text { odd }
$$

