THE SIMPLEST INVOLUTORIAL TRANSFORMATION CONTAINED MULTIPLY IN A LINE COMPLEX*

BY VIRGIL SNYDER

Involutorial birational transformations contained multiply in a linear line complex are interesting, as they furnish the simplest examples of involutions that are probably irrational. The following example is the simplest possible case of such a transformation; it possesses features that are characteristic, and may itself be irrational.[†]

Let $(0, 0, z_3, z_4)$ be a variable point on the line $x_1=0$, $x_2=0$, and $\lambda_1 x_3^2 + \lambda_2 x_4^2 = 0$ an involution I_2 of pairs of planes of a pencil, the axis being skew to the first line. Let us suppose that the point (z) and the planes (λ) are connected by the relation $z_3\lambda_1^2 + z_4\lambda_2^2 = 0$. A point (y) of space determines the pair of planes $x_3^2 y_4^2 - x_4^2 y_3^2 = 0$ of the pencil; hence $z_3 = y_3^4$, $z_4 = y_4^4$. A point (x) on the line joining (y) to (z) has coordinates of the form $\rho x_1 = \sigma y_1$, $\rho x_2 = \sigma y_2$, $\rho x_3 = \sigma y_3 + \tau z_3$, $\rho x_4 = \sigma y_4 + \tau z_4$. This line meets the plane conjugate to that determined by (y) in (y'), corresponding to $\sigma = y_3^3 + y_4^3$, $\tau = -2$.

The points (y), (y') are therefore associated in an involutorial birational transformation, the equations of which have the form

(I₄)
$$\begin{cases} \rho x_1' = (x_3^3 + x_4^3)x_1, \\ \rho x_2' = (x_3^3 + x_4^3)x_2, \\ \rho x_3' = (x_4^3 - x_3^3)x_3, \\ \rho x_4' = (x_3^3 - x_4^3)x_4. \end{cases}$$

The transformation I_4 is contained doubly in the special linear line complex, the axis of which is $x_1=0$, $x_2=0$ in the sense that each line of the complex contains two pairs of conjugate points in I_4 . Every plane through the axis is transformed into

^{*} Written under the auspices of the Heckscher Foundation for the Promotion of Research, established by Mr. August Heckscher at Cornell University. Presented to the Society, April 6, 1928.

[†] Another involution of order 2 that is probably irrational is described in the Giornale di Matematiche, vol. 61 (1923), pp. 125–128.