THE SIMPLEST INVOLUTORIAL TRANSFORMATION CONTAINED MULTIPLY IN A LINE COMPLEX*

BY VIRGIL SNYDER

Involutorial birational transformations contained multiply in a linear line complex are interesting, as they furnish the simplest examples of involutions that are probably irrational. The following example is the simplest possible case of such a transformation; it possesses features that are characteristic, and may itself be irrational. \dagger

Let $\left(0,0, z_{3}, z_{4}\right)$ be a variable point on the line $x_{1}=0, x_{2}=0$, and $\lambda_{1} x_{3}{ }^{2}+\lambda_{2} x_{4}{ }^{2}=0$ an involution I_{2} of pairs of planes of a pencil, the axis being skew to the first line. Let us suppose that the point (z) and the planes (λ) are connected by the relation $z_{3} \lambda_{1}{ }^{2}+z_{4} \lambda_{2}{ }^{2}=0$. A point (y) of space determines the pair of planes $x_{3}^{2} y_{4}^{2}-x_{4}^{2} y_{3}{ }^{2}=0$ of the pencil; hence $z_{3}=y_{3}{ }^{4}, z_{4}=y_{4}{ }^{4}$. A point (x) on the line joining (y) to (z) has coordinates of the form $\rho x_{1}=\sigma y_{1}, \rho x_{2}=\sigma y_{2}, \rho x_{3}=\sigma y_{3}+\tau z_{3}, \rho x_{4}=\sigma y_{4}+\tau z_{4}$. This line meets the plane conjugate to that determined by (y) in (y^{\prime}), corresponding to $\sigma=y_{3}{ }^{3}+y_{4}{ }^{3}, \tau=-2$.

The points $(y),\left(y^{\prime}\right)$ are therefore associated in an involutorial birational transformation, the equations of which have the form

$$
\left\{\begin{array}{l}
\rho x_{1}^{\prime}=\left(x_{3}^{3}+x_{4}^{3}\right) x_{1}, \tag{4}\\
\rho x_{2}^{\prime}=\left(x_{3}^{3}+x_{4}^{3}\right) x_{2}, \\
\rho x_{3}^{\prime}=\left(x_{4}^{3}-x_{3}^{3}\right) x_{3}, \\
\rho x_{4}^{\prime}=\left(x_{3}^{3}-x_{4}^{3}\right) x_{4} .
\end{array}\right.
$$

The transformation I_{4} is contained doubly in the special linear line complex, the axis of which is $x_{1}=0, x_{2}=0$ in the sense that each line of the complex contains two pairs of conjugate points in I_{4}. Every plane through the axis is transformed into

[^0]
[^0]: * Written under the auspices of the Heckscher Foundation for the Promotion of Research, established by Mr. August Heckscher at Cornell University. Presented to the Society, April 6, 1928.
 \dagger Another involution of order 2 that is probably irrational is described in the Giornale di Matematiche, vol. 61 (1923), pp. 125-128.

