SINGULAR MANIFOLDS AMONG THOSE OF AN ANALYTIC FAMILY*

BY O. D. KELLOGG

1. Exceptional Occurrence of Singular Manifolds. This note is concerned with the following theorem.

Let R denote a closed region, consisting of an open continuum of the space of the n complex variables z_1, z_2, \dots, z_n , together with its boundary points. Let the functions $F_i(z_1, z_2, \dots, z_n)$, $i=1, 2, \dots, m, m \leq n$, be analytic at all points of R. Let M_k denote the matrix

$$(M_k) \qquad \qquad \left\| \frac{\partial F_i}{\partial z_j} \right\|, \qquad (i = 1, 2, \cdots, k), \\ (j = 1, 2, \cdots, n).$$

We assume that M_m is of rank m at some point of R.

Consider the manifold defined by the equations

(A) $F_1(z_1, z_2, \cdots, z_n) = c_1, \cdots, F_m(z_1, z_2, \cdots, z_n) = c_m,$

where c_1, c_2, \cdots, c_m are complex constants.

For all but a finite number of values of c_1 the manifold defined by the first equation (A) contains no points in R at which the rank of M_1 is less than 1.

If c_1, c_2, \cdots, c_k have been chosen so that the matrix M_k is of rank k at every point in R on the manifold defined by the first k equations (A), then for all but a finite number of values of c_{k+1} the manifold defined by the first k+1 equations (A) contains no points in R at which the rank of the matrix M_{k+1} is less then k+1.

Thus, if c_1, c_2, \dots, c_m are chosen in order, each avoiding a certain finite set of values, the manifold defined by the equations (A) will have no singular points in R.[†]

^{*} Presented to the Society, March 29, 1929.

[†] As far as I know, a proof of this general theorem has not been published. Birkhoff and I gave it for the case in which the functions F_i are polynomials (Transactions of this Society, vol. 23 (1922), pp. 97–98), and