THE EXISTENCE OF THE LEBESGUE-STIELTJES INTEGRAL*

BY R. L. JEFFERY

A definition of a Lebesgue-Stieltjes integral of a function $f(x)$ defined on (a, b) with respect to a non-decreasing function $V(x)$ bounded on (a, b) has been given by Hildebrandt. \dagger

This definition involves the idea of the measurability of f with respect to V. If α is the interval $a^{\prime}<x<b^{\prime}$, then $V(\alpha)=V\left(b^{\prime}-0\right)-V\left(a^{\prime}+0\right)$. Let a set E be enclosed in a finite or countably infinite set of non-overlapping open intervals $A \equiv \alpha_{1}, \alpha_{2}, \cdots$. Let $V(E)$ be the lower limit of $V(A)=\sum V\left(\alpha_{i}\right)$ for all possible enclosures A. In the same way define $V(C E)$. When

$$
\begin{equation*}
V(E)+V(C E)=V(a, b)=V(b)-V(a), \tag{1}
\end{equation*}
$$

the set E is said to be measurable relative to V. If for all real values of l the set for which $f>l$ satisfies (1), then f is measurable relative to V. Hobson \ddagger gives a definition which involves a different formulation of the same idea. To state this we shall make use of the following correspondence between the points of $\alpha=V(a) \leqq u \leqq V(b)=\beta$ and $a \leqq x \leqq b$. First, if x is a point of discontinuity of V, then x goes by means of $u=V(x)$ into the closed interval $V(x-0) \leqq u$ $\leqq V(x+0)$. There will then correspond to each u on (α, β) at least one value of x on (a, b). If to a value of u there corresponds more than one value of x, then V is constant throughout an interval, and x_{u} shall be the lower end point of this interval, or the lower bound of points of the interval in case it is open. If $f(x)$ is any function defined on (a, b), then $\psi(u)$ is defined by $\psi(u)=f\left(x_{u}\right)$ and

$$
L S \int_{a}^{b} f(x) d V(x)=L \int_{\alpha}^{\beta} \psi(u) d u,
$$

[^0]
[^0]: * Presented to the Society, September 7, 1928.
 \dagger This Bulletin, vol. 24, pp. 188-190.
 \ddagger Theory of Functions of a Real Variable, 3d ed., vol. I, §445.

