ON THE ATTRACTION OF SPHERES

IN ELLIPTIC SPACE*

BY JAMES PIERPONT

1. Introduction. C. Neumann, Killing, and Liebmann have treated the motion of a material particle about a center of attraction in elliptic (hyperbolic) space. The question arises do these results hold when the center of attraction is replaced by a spherical mass.

Let the sphere be placed at the origin of coordinates O, let the polar coordinates of an element of volume at P of the sphere be ρ, ϕ, θ, where ϕ, θ are latitude and longitude. The element of volume is then

$$
d v=\sin ^{2} \rho \cos \phi d \theta d \rho d \phi
$$

where for simplicity we take the space constant $R=1$. We will suppose the elementary mass A attracted by the sphere is on the z axis. Let $O A=\alpha, A P=\epsilon$, in elliptic measure. The force of attraction we will take to be

$$
F=\frac{c d v}{\sin ^{2} \epsilon}, \quad c \text { a constant }
$$

If ψ is the angle $A P$ makes with the z axis, the work done by the force F for a small displacement of A of extent $\delta \alpha$ along the z axis is

$$
\delta W=F \cos \psi d v \cdot \delta \alpha
$$

It will be convenient to set

$$
\begin{aligned}
a & =\sin \alpha, & r & =\sin \rho, \\
a^{\prime} & =\cos \alpha, & r^{\prime} & =\sin \epsilon,
\end{aligned} \quad p=\sin \phi, \quad e^{\prime}=\cos \epsilon, \quad p^{\prime}=\cos \phi .
$$

We have then

[^0]
[^0]: * Presented to the Society, New York, March 29, 1929.

