The proof is immediate, for by the Hamilton-Cayley theorem

$$
\delta(R(x))=0, \quad \delta^{\prime}(S(x))=0
$$

Since \mathfrak{N} is isomorphic with the algebra of matrices $R(x)$ (or $S(x)$), we have $\delta(x)=0$ (or $\delta^{\prime}(x)=0$).

For the example of $\S 4$ we have

$$
\delta(\omega)=\omega^{2}-\omega x_{1}, \quad \delta^{\prime}(\omega)=\omega^{2}-2 \omega x_{1}+x_{1}^{2}
$$

Hence $\delta(x)=0$, while $\delta^{\prime}(x)=x_{1}^{2}-x_{1}^{2} e_{1}-x_{1} x_{2} e_{2}$.
Ohio State University

ON THE NUMBER ($\left.10^{23}-1\right) / 9$

D. H. LEHMER

The purpose of this note is to save any further effort* in trying to factor the number $N=\left(10^{23}-1\right) / 9=111,11111$, 11111, 11111, 11111 which in a previous paper was found to be composite. \dagger This assertion was based on a negative result giving 3^{N-1} 丰 $1(\bmod N)$.

On the basis of this conclusion Kraitchik \ddagger attempted to factor N arriving at another negative result that N had no factors and therefore was a prime. This conflict of results led us to recompute the value of $3^{N-1}(\bmod N)$ which shows clearly a mistake in the original calculation arising from the choice of 3 for a base instead of another number prime to $10^{23}-1$. Such another base would have furnished the extra check which would have detected the error.

[^0]
[^0]: * A recent letter from Mr. R. E. Powers informs us that he has been to the trouble of finding 150 quadratic residues of N.
 \dagger This Bulletin, vol. 33 (1927), p. 338.
 \ddagger Mathesis, vol. 42 (1928), p. 386.

