A PARTIAL ISOMORPHISM BETWEEN THE FUNC-TIONS OF LUCAS AND WEIERSTRASS*

BY E. T. BELL

1. Introduction. In a former paper[†] it was pointed out that certain identities in the theory of multiplication, real or complex, of elliptic functions, are of precisely the same form as others between Lucas' U_n , V_n . The latter were defined only for integer values of n by Lucas as follows,

$$U_n \equiv \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad V_n \equiv \alpha^n + \beta^n,$$

where α , β are real or complex numbers such that $\alpha + \beta = p$, $\alpha\beta = q$, where p, q are rational numbers. Hence U_n , V_n are rational numbers and are solutions of

$$W_{n+2} = pW_{n+1} - qW_n,$$

with the initial conditions

$$(U_0, U_1) = (0, 1), (V_0, V_1) = (2, p).$$

It follows, as shown by Lucas,[‡] that U_n , V_n are simply expressible as circular functions of a real or imaginary argument, according as α/β is imaginary or real. Thus every formula in elliptic functions will contain as a degenerate case one concerning the U_n , V_n functions, but this is not the isomorphism sought.

We first generalize Lucas' definition in one respect and specialize it in another, replacing n by the complex variable zand restricting q to be 1. We shall write the functions thus defined as

(1)
$$U(z) \equiv \frac{\alpha^z - \alpha^{-z}}{\alpha - \alpha^{-1}}, \quad V(z) \equiv \alpha^z + \alpha^{-z},$$

^{*} Presented to the Society, December 31, 1928.

[†] This Bulletin, vol. 29 (1923), pp. 401–406.

[‡] American Journal of Mathematics, vol. 1, (1878), p. 189.