THE EQUATION OF THE V_{n-1}^{n-1} IN S_{n}^{*}

BY C. A. RUPP
Segre, dealing with synthetic and enumerative geometry, has twice mentioned \dagger that the manifold formed by all the lines of S_{n} which meet n given S_{n-2} 's is a V_{n-1}^{n-1}. In a recent article, Wong \ddagger mentions that the equation of the general V_{n-1}^{n-1} is unknown. It is the purpose of this paper to exhibit the equation.

The method is the following: through a general point of one of a set of n given S_{n-2} 's is passed a line which is required to meet each of the remaining $(n-1) S_{n-2}$'s. The eliminant of the system of equations thus set up is the desired equation, as will shortly appear.

Let the equations of the n given S_{n-2} 's be

$$
x_{i}=0=\sum_{j=0}^{j=n} a_{i j} x_{j}, \quad(i=1,2, \cdots, n), \quad\left(a_{i i}=0\right)
$$

Berzolari§ has shown that the above display does not particularize the set of S_{n-2} 's, but is a mere question of a suitable choice of the reference system. We shall need the GrassmannPlücker coordinates of the S_{n-2} 's, that is, the two-rowed determinants from the matrices of the coefficients in their equations. In each set of coordinates we here find $n(n-1) / 2$ elements are zero; the remaining n are some of the numbers $a_{i j}$, prefaced with a proper sign.

Let y be the coordinates of a point on one of the S_{n-2} 's, say the first one. We then have that

$$
\begin{equation*}
y_{1}=0, \quad \sum_{j=0}^{j=n} a_{1 j} y_{j}=0 \tag{A}
\end{equation*}
$$

[^0]
[^0]: * Presented to the Society, December 27, 1928.
 \dagger Segre, Mehrdimensionale Räume, Encyklopädie, vol. III C7, pp. 815 and 832.
 \ddagger Wong, B. C., this Bulletin, vol. 34 (1928), pp. 553-554.
 § Berzolari, Rendiconti del Circolo Matematico di Palermo, vol. 29 (1905), p. 229.

