THE FORMS $a x^{2}+b y^{2}+c z^{2}$ WHICH REPRESENT ALL INTEGERS

BY L. E. DICKSON

Theorem. $f=a x^{2}+b y^{2}+c z^{2}$ represents all integers, positive, negative, or zero, if and only if: I. a, b, c are not all of like sign and no one is zero; II. no two of a, b, c have a common odd prime factor; III. either a, b, c are all odd, or two are odd and one is double an odd; IV. -bc, -ac, -ab are quadratic residues of a, b, c, respectively.

We shall first prove that I-IV are necessary conditions. Let therefore f represent all integers. It is well known that I follows readily.

If a and b are divisible by the odd prime p, f represents only $1+\frac{1}{2}(p-1)$ incongruent residues $c z^{2}$ modulo p. This proves II.

Next, no one of a, b, c is divisible by 8 . Let $a \equiv 0(\bmod 8)$. Every square is $\equiv 0,1$, or $4(\bmod 8)$. First, let $b=2 B$. Since f represents odd integers, c is odd. Since $b y^{2} \equiv 0$ or $2 B$ $(\bmod 8)$ and $c z^{2} \equiv 0, c$, or $4 c, f$ has at most six residues modulo 8. If m is a missing residue, f represents no $m+p n$. Second let b and c be odd. Then $4 b \equiv 4 c \equiv 4(\bmod 8)$. Thus the residues of f modulo 8 are obtained by adding each of 0,4 , b to each of $0,4, c$; we get only seven residues $0,4, b, c$, $4+b, 4+c, b+c$.

No one of a, b, c is divisible by 4 . Let a be divisible by 4 . Since a is not divisible by $8, a \equiv 4(\bmod 8)$. Evidently $f \equiv 0, b, c$, or $b+c(\bmod 4)$. No two of these are congruent modulo 4. If $b \equiv \pm 1(\bmod 4)$, they are $0, \pm 1, c, c \pm 1$. Evidently c is not congruent to $0, \pm 1$, or ∓ 1. Hence $c \equiv 2(\bmod 4)$. Since $b \neq 0$, this proves that one of b and c is $\equiv 2(\bmod 4)$. By symmetry, we may take $b \equiv 2(\bmod 4)$. If $b \equiv 6(\bmod 8)$, we apply our discussion to $-f$ instead of

