POLYNOMIALS $f[\phi(x)]$ REDUCIBLE IN FIELDS IN WHICH $f(x)$ IS IRREDUCIBLE*

BY LOUIS WEISNER

1. Introduction. Professor Ritt recently had occasion to consider the irreducible polynomials which become reducible when each argument is replaced by a power of itself. \dagger

His results suggest the related problem of determining all polynomials $\phi_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, \phi_{m}\left(x_{1}, \cdots, x_{m}\right)$, such that $f\left[\phi_{1}, \cdots, \phi_{m}\right]$ is reducible, $f\left(x_{1}, \cdots, x_{m}\right)$ being irreducible. There is no such problem for functions of one variable, as every polynomial in a single variable can be factored into linear factors. If, however, we restrict ourselves to a field R, the problem arises: Given a polynomial $f(x)$ with coefficients in R and irreducible in R; to determine all polynomials $\phi(x)$ with coefficients in R such that $f[\phi(x)]$ is reducible in R. The present paper is devoted to a solution of this problem.
2. Reducibility of $\phi(x)-x_{i}$ in R^{\prime}. Let

$$
\begin{equation*}
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) \tag{1}
\end{equation*}
$$

be a polynomial with coefficients in R and irreducible in R; and let $\phi(x)$ be an arbitrary polynomial with coefficients in R. An irreducible factor $A(x)$ of

$$
\begin{equation*}
f[\phi(x)]=\left[\phi(x)-x_{1}\right] \cdots\left[\phi(x)-x_{n}\right] \tag{2}
\end{equation*}
$$

has a root in common with one of the equations $\phi(x)=x_{i}$, say $\phi(x)=x_{1}$. Let $a_{1}(x)$ be the greatest common divisor of $A(x)$ and $\phi(x)-x_{1}$, and

$$
\left\{\begin{align*}
\phi(x)-x_{1} & =a_{1}(x) b_{1}(x) \tag{3}\\
A(x) & =a_{1}(x) c_{1}(x),
\end{align*}\right.
$$

[^0]
[^0]: * Presented to the Society, February 25, 1928.
 \dagger J. F. Ritt, A factorization theory for functions $\sum_{i=1}^{i=n} a_{i} e^{\alpha_{i} x}$, Transactions of this Society, vol. 29 (1927), pp. 584-596.

