ON A CERTAIN SYSTEM OF ∞r^{-2} LINES IN r-SPACE

BY B. C. WONG

This paper deals with the following theorem.

The locus of ∞^{r-2} lines incident with r given (r-2)-spaces in S_r is an (r-1)-dimensional manifold V_{r-1}^{r-1} of order r-1.

To prove this, we note that for r=2 there is one line joining two given points in a plane and that for r=3 the lines meeting three given lines in an S_3 form a quadric surface. If r=4, that is, if four planes are given in S_4 , the locus of the ∞^2 lines incident with them is a V_3^3 . This cubic hypersurface with its many interesting properties has been studied by a number of writers.*

If r=5, that is, if five three-spaces are given in S_5 , pass an S_4 through one of them, say R_3 . This S_4 meets the other four 3-spaces in four planes and the lines incident with these four planes are also incident with R_3 . These lines form a V_3^3 in S_4 . The manifold of the ∞^3 lines incident with the five given 3-spaces is intersected by the S_4 through R_3 in R_3 and a V_3^3 and is therefore of order 4. If we apply this process of reasoning to the cases r=6, 7, etc., we soon arrive at the general theorem stated above.

Consider another proof. Let the r given (r-2)-spaces in S_r be $S'_{r-2}, S''_{r-2}, \cdots, S^{(r)}_{r-2}$, and further let a general line l be given. The points of l determine with $S'_{r-2}, S''_{r-2}, \cdots, S^{(r-1)}_{r-2}$ r-1 projective pencils of hyperplanes. The rth (r-2)-space, $S^{(r)}_{r-2}$, intersects these pencils in r-1 pencils of (r-3)-spaces. As there are r-1 sets of corresponding (r-3)-spaces each intersecting in a point, there are r-1 lines of intersection of corresponding hyperplanes of the pencils in S_r which meet $S^{(r)}_{r-2}$. Hence, the general line l meets r-1 of the ∞r^{-2} lines

^{*} See Bertini, Projecktive Geometrie Mehrdimensionaler Räume, 1924, Chap. 8, §§25-36, where references are given.