NOTE ON A CONVERGENCE PROOF

BY DUNHAM JACKSON

Some years ago I published a particularly simple proof of the convergence of the Fejér mean of the Fourier series for an arbitrary continuous function.* I did not notice until some time later that the same proof had already been given by Haar \dagger in his thesis. The present note constitutes a renewed attempt to contribute something to the theory of the method in question, by applying it to a problem which is not treated by Haar, in the passage cited at any rate. The substance of the note consists in the proof of the following theorem: \ddagger

Let $f(x)$ be an arbitrary continuous function of period 2π. With each positive integral value of n, let an integer m_{n} be associated, subject merely to the condition that $m_{n} \geqq n$, and let

$$
\begin{equation*}
\tau_{n}(x)=\frac{1}{n m_{n}} \sum_{i=1}^{m n} f\left(t_{i}\right) \frac{\sin ^{2} \frac{1}{2} n\left(t_{i}-x\right)}{\sin ^{2} \frac{1}{2}\left(t_{i}-x\right)} \tag{1}
\end{equation*}
$$

where $t_{i}=2 i \pi / m_{n}$. Then $\tau_{n}(x)$ converges uniformly toward $f(x)$ as n becomes infinite.

The reasoning is given in full, so that it can be understood

[^0]
[^0]: * Note on a method of proof in the theory of Fourier's series, this Bulletin, vol. 27 (1920-21), pp. 108-110.
 \dagger A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Dissertation, Göttingen, 1909; p. 29; reprinted in Mathematische Annalen, vol. 69 (1910), pp. 331-371; pp. 353-354.
 \ddagger For the case $m_{n}=n$, see D. Jackson, A formula of trigonometric interpolation, Rendiconti del Circolo Matematico di Palermo, vol. 37 (1914), pp. 371-375; S. Bernstein, Sur la convergence absolue des séries trigonométriques, Comptes Rendus, vol. 158 (1914), pp. 1661-1663; L. Fejér, Über Interpolation, Göttinger Nachrichten (1916), pp. 66-91; pp. 87-91. For a corresponding generalization of the ordinary formula of trigonometric interpolation, see D. Jackson, Some notes on trigonometric interpolation, American Mathematical Monthly, vol. 34 (1927), pp. 401-405. For the underlying idea of the present treatment, see also Hahn, Über das Interpolationsproblem, Mathematische Zeitschrift, vol. 1 (1918), pp. 115-142.

