AN ELEMENTARY PROOF BY MATHEMATICAL INDUCTION OF THE EQUIVALENCE OF THE CESÅRO AND HÖLDER SUM FORMULAS*

BY TOMLINSON FORT

For brevity, notation and terminology in this note are generally not explained. It is believed that they will be clear in all instances to any probable reader.

Theorem. The Hölder and Cesàro methods of summation are equivalent.

Proof. Let $C_{n}{ }^{(2)}$ represent the Cesàro sum of order r to n terms:

$$
\begin{gather*}
C_{n}^{(r)}=s_{0} \frac{r}{r+n}+\cdots+s_{k} \frac{r(n-k+1) \cdots n}{(r+n-k) \cdots(r+n)} \tag{1}\\
+\cdots+s_{n} \frac{r(n!)}{r \cdots(r+n)} .
\end{gather*}
$$

We readily verify that $C_{n}{ }^{(r)}$ satisfies the equation

$$
\begin{equation*}
(n+r+1) C_{n}^{(r+1)}-n C_{(n-1)}^{(r+1)}=(r+1) C_{n}^{(r)}, \tag{2}
\end{equation*}
$$

which may be written in the form

$$
\Delta\left\{n C_{(n-1)}^{(r+1)}\right\}+r C_{n}^{(r+1)}=(r+1) C_{n}^{(r)}
$$

or

$$
\begin{equation*}
(n+1) C_{n}^{(r+1)}+r \sum_{n=0}^{n} C_{n}^{(r+1)}=(r+1) \sum_{n=0}^{n} C_{n}^{(r)} . \tag{3}
\end{equation*}
$$

By solving (2) we get the following, as is easily verified:
$C_{n}^{(r+1)}=\frac{n!}{(r+2) \cdots(r+n+1)} \sum_{n=0}^{n} \frac{(r+1) \cdots(r+n)}{n!} C_{n}^{(r)}$

$$
\begin{equation*}
=\frac{(r+1)!}{(n+1) \cdots(n+r+1)} \sum_{n=0}^{n} \frac{(n+1) \cdots(n+r)}{r!} C_{n}^{(r)} . \tag{4}
\end{equation*}
$$

*Presented to the Society, December 29, 1926.

