SINGULARITIES OF THE HESSIAN*

BY T. R. HOLLCROFT

1. Introduction. It has been proved \dagger that when a curve f has no point singularities its Hessian H has no point singularities. Then point singularities occur on H when and only when f has point singularities. Moreover, singular points of H can occur only at those points which are singular points of f.

The number of intersections of f and H at any singularity of f is

$$
6 \delta_{1}+8 \kappa_{1}+\iota_{1}
$$

where $\delta_{1}, \kappa_{1}, \iota_{1}$ are the numbers of nodes, cusps, and inflections respectively contained in the singularity of f. A given singularity of f needs but to be resolved and the number of intersections of f and H are thus found without reference to H. In order for this number of intersections to occur, there must be a singularity of H at this point, but except for cusps and simple multiple points with distinct tangents these singularities of H have not been investigated.

The purpose of this paper is to explain geometrically how the intersections of f and H at a given singularity of f occur. The principal problem involved is to find the singularity of H corresponding to a given singularity of f.
2. Simple Multiple Points. It has long been known that at a simple r-fold point of f with r distinct tangents, H has a ($3 r-4$)-fold point, r of whose tangents coincide, one each, with r tangents of the r-fold point on f; also that at a cusp of f, H has a triple point two of whose tangents coincide with the cuspidal tangent.

[^0]
[^0]: * Presented to the Society, October 30, 1926.
 \dagger A. B. Basset, On the Hessian, the Steinerian, and the Cayleyan, Quarterly Journal, vol. 47 (1916), p. 227.

