ON THE POLYNOMIAL OF THE BEST APPROXIMATION TO A GIVEN CONTINUOUS FUNCTION*

BY J. SHOHAT (JACQES CHOKHATE)

1. A Theorem on Minimizing Polynomials. Let $f(x)$ and $p(x)$ be defined on a finite interval $(a, b) ; f(x)$ is bounded and integrable, $p(x)$ is integrable and not negative.

Theorem I.t If there exist two numbers α, β such that $a \leqq \alpha<\beta \leqq b$, and such that

$$
\int_{c}^{d} p(x) d x>0
$$

whenever $\alpha \leqq c<d \leqq \beta$, then there exists one and only one polynomial of degree $\leqq n$ minimizing the integral

$$
I_{n k}=\int_{a}^{b} p(x)\left|f(x)-U_{n k}(x)\right|^{\mid k} d x
$$

where

$$
U_{n k}(x)=\sum_{i=0}^{n} u_{i k} x^{i}
$$

provided that $k>1$. If $k=1$, the proof of existence applies without change; and the approximating polynomial is unique, if $f(x)$ is continuous on (a, b), and if

$$
\int_{c}^{d} p(x) d x>0
$$

whenever $a \leqq c<d \leqq b$.
The proof may be organized as follows.

[^0]
[^0]: * Presented to the Society, December 26, 1924. The author wishes to acknowledge with appreciation many helpful suggestions made by Professor D. Jackson in connection with this paper.
 \dagger Cf. G. Pólya, Sur un algorithme ..., Comptes Rendus, vol. 157 (1913), pp. 840-843; D. Jackson, On functions of closest approximation, Transactions of this Society, vol. 22 (1921), pp. 117-128, Note on a class of polynomials of approximation, ibid., vol. 22 (1921), pp. 320-326, A generalized problem in weighted approximation, ibid., vol. 26 (1924), pp. 133-154, Note on the convergence of weighted trigonometric series, this Bulletin, vol. 29 (1923), pp. 259-263.

