A GENERALIZATION OF A PROPERTY OF AN ACNODAL CUBIC CURVE

1. Introduction. We refer to the following property.

If in a plane cubic curve there is inscribed a real triangle $A B C$ such that $B C, C A, A B$ touch the curve at C, A, B, then the cubic can be projected by a real projection so as to have trigonal symmetry, i.e., it can be brought to self-coincidence by rotating it through $2 \pi / 3$ about a point. If, in particular, the cubic is unicursal (rational), it must be acnodal.*

The generalization suggested is that of any unicursal curve in which a triangle $A B C$ is inscribed, so that A, B, C are each given by a single value of a parameter in terms of which the coordinates of any point of the curve are rationally expressed, while the intersections of $B C, C A, A B$ with the curve lie respectively p at C and q at B, p at A and q at C, p at B and q at A. We shall investigate the properties of such curves.

Take the parameters of A, B, C as $0, \infty, 1 . \dagger$ Then choosing suitable homogeneous coordinates, we have evidently

$$
\begin{equation*}
x: y: z=(t-1)^{p}:(-t)^{p}(t-1)^{q}:(-t)^{q} \tag{1}
\end{equation*}
$$

We shall find it convenient to use a quantity ϵ defined by

$$
\begin{equation*}
\epsilon \equiv p^{2}-p q+q^{2} . \tag{2}
\end{equation*}
$$

Elimination of t from (1) gives

$$
\begin{equation*}
x^{p / \epsilon} y^{q / \epsilon}+y^{p / \epsilon} z^{q / \epsilon}+z^{p / \epsilon} x^{q / \epsilon}=0 \tag{3}
\end{equation*}
$$

Hence the curves may be projected by a real projection so as to have trigonal symmetry, as in the case of the cubic. Points with parameters $t, 1 /(1-t),(t-1) / t$ are those related by the symmetry. If $p=q, p$ and q are factors of ϵ, and the curve is one of the "triangular-symmetric" curves discussed elsewhere. \ddagger We shall therefore suppose p and q unequal in

[^0]
[^0]: * For each non-singular or acnodal cubic, two such real triangles exist. \dagger See Hilton, Plane Algebraic Curves, Clarendon Press, p. 148. This book is referred to later as "H. P. A. C."
 \ddagger Messenger of Mathematics, vol. 50, (1921), p. 171.

