where D_{1} and D_{2} are the characteristic functions (2) of the two systems and $p_{1}=p(a) / p(b)$. A sufficient condition, then, that the characteristic numbers of the two systems shall either alternate or coincide, is that the quadratic form in $u_{1}(x), u_{2}(x)$ shall be definite. But the discriminant Δ of the form is

$$
\Delta=\left(p_{1}-1\right)^{2} u_{1}^{2} .
$$

Consequently the form will be definite if and only if we have $p(a)=p(b)$, which is the well known condition that system II shall be self-adjoint.*

The University of Wisconsin

NOTE CONCERNING THE ROOTS
 OF AN EQUATION

BY K. P. WILLIAMS
Professors Carmichael and Mason have published the following theorem. \dagger

All roots of the equation

$$
\begin{equation*}
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}=0 \tag{1}
\end{equation*}
$$

are, in absolute value, less than

$$
\begin{equation*}
\sqrt{1+\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\cdots+\left|a_{n}\right|^{2}} . \tag{2}
\end{equation*}
$$

It is apparent that this limit may be greatly in excess of the actual maximum of the absolute values of the roots. An illustration of this fact is furnished by the equation

$$
\begin{equation*}
x^{n}+x^{n-1}+\cdots+x+1=0 \tag{3}
\end{equation*}
$$

The theorem asserts that $\sqrt{n+1}$ is greater than the absolute value of any root. If n is large this is rather meager and inexact information, since all roots are in absolute value exactly 1 , irrespective of the value of n.

[^0]
[^0]: * Note on the roots of algebraic equations, this Bulletin, vol. 21 (1914), p. 21.
 \dagger This example is treated by Bôcher by different means in his Leçons sur les Méthodes de Sturm, 1917, pp. 83-91.

