THE SIMPLE GROUP OF ORDER 2520

by G. A. MILLER

Extract from a letter to F. N. Cole
If a second simple group of order $7!/ 2$ existed it could not be represented as a primitive group whose degree is less than twenty-one since all these primitive groups have been determined. The number of its subgroups of order 7 would be 120 , for the only other divisor of $7!/ 2$ which is of the form $1+7 k$ and greater than 20 is 36 . It is easy to prove that such a simple group could not involve exactly 36 subgroups of order 7, as follows.

If a simple group of order $7!/ 2$ contained exactly 36 subgroups of order 7, it could be represented as a transitive group G on 36 letters representing the permutations of these 36 subgroups. Its subgroup G_{1} composed of all its substitutions omitting one letter would be of order 70. It would therefore involve a cyclic subgroup of order 35 which would be regular, since the substitutions of order 7 would be regular. The subgroup G_{1} could not be dihedral, since it could not involve negative substitutions. For the same reason the substitutions of order 2 could not transform the substitutions of order 5 into themselves and the substitutions of order 7 into their inverses. If these substitutions of order 2 could transform the substitutions of order 7 into themselves and the substitutions of order 5 into their inverses, G_{1} would involve 5 conjugates of order 2. But this is impossible, since 36.5 is not divisible by 8 .

Having proved that if the group in question existed it would contain 120 subgroups of order 7, we proceed to consider its subgroups of order 9 . The number of these subgroups would be divisible by 35 . In fact, if an operator of order 5 or an operator of order 7 could transform a subgroup of order 9 into itself it would be commutative with each of its operators. It was proved above that an operator of order 7 cannot be

