RECIPROCAL SUBGROUPS OF AN ABELIAN GROUP.

BY PROFESSOR G. A. MILLER.

(Read before the American Mathematical Society September 8, 1920.)
§ 1. Introduction. Every two subgroups of the group G which have the property that the product of their orders is equal to the order of G have been called reciprocal subgroups of G.* A group may have subgroups which have no reciprocals. For instance, the tetrahedral group contains subgroups of order 2 but it does not contain any subgroup of order 6 . If a group is abelian, each of its subgroups is known to have at least one reciprocal subgroup. A necessary and sufficient condition that every subgroup of G have one and only one reciprocal is that G be cyclic.

Two invariant subgroups of G will be called corresponding reciprocal subgroups of G if each of them is simply isomorphic with the quotient group of G with respect to the other. One of the objects of the present paper is to prove that every subgroup of an abelian group has a corresponding reciprocal subgroup. All the subgroups in a complete set of conjugate subgroups under the group of isomorphisms of G, that is, all the subgroups in a set of I-conjugate subgroups of G, must evidently have the same reciprocal subgroups. Hence the theory of corresponding reciprocal subgroups of an abelian group establishes a correspondence between pairs of sets of I-conjugate subgroups. In what follows it will be assumed that G is abelian.

As G is the direct product of its Sylow subgroups when the order of G is not a power of a prime number p and as the number of I-conjugates of a subgroup of such a G is the product of the numbers of the I-conjugates of the Sylow subgroups of this subgroup it will be assumed in what follows that the order of G is of the form p^{m} and that G has λ_{1} invariants which are separately equal to $p^{m_{1}}, \lambda_{2}$ invariants which are separately equal to $p^{m_{2}}, \cdots, \lambda_{\gamma}$ invariants which are separately equal to $p^{m_{\gamma}}$. Hence

$$
\lambda_{1} m_{1}+\lambda_{2} m_{2}+\cdots+\lambda_{\gamma} m_{\gamma}=m
$$

It will be convenient to assume that $m_{1}>m_{2}>\cdots>m_{\gamma}$.

[^0]
[^0]: * This Bulletin, vol. 9 (1903), p. 541.

