that $a\mu_{rmg} \geq 1$, where r^{mg} is the representative element of any class \mathfrak{P}^{mg} to which p belongs. Using such a function μ in the condition (1b) on the developmental system and noting that the sequence $\{\mu_{0p_{2n_k}}\}$ is bounded, we see that for every ethere is an m_e such that for $m \geq m_e$ and for every k the value $\theta_{p_{2n_k}}^m$ does not exceed e. But this affords a contradiction to the conclusion reached above that

$$L_m(L_k\theta_{p_{2n_k}}^m)=1.$$

Therefore the hypothesis that p is not a limit of the sequence $\{p_{2n}\}$ is contrary to fact.

These considerations may be extended to the infinite developments of Chittenden.*

Adelbert College,

WESTERN RESERVE UNIVERSITY.

ON THE ADJOINT OF A CERTAIN MIXED EQUATION.

BY DR. R. F. BORDEN.

(Read before the American Mathematical Society December 30, 1919.)

CONSIDER a function of the form

(1)
$$F{f(x)} = \Delta f'(x) + a(x)f'(x) + b(x)\Delta f(x) + c(x)f(x)$$
,

where a(x), b(x), and c(x) are analytic functions of x, also $\Delta f(x) = f(x + 1) - f(x)$, and f'(x) = (d/dx)f(x). We will say that $G\{g(x)\}$ is the adjoint of $F\{f(x)\}$ if $G\{g(x)\} = 0$ is the condition that

(2)
$$\int \Sigma g(x) F\{f(x)\} dx = \Sigma M(x) + \int N(x) dx,$$

where Σ denotes an inverse of Δ . This condition (2) is satisfied if

(3)
$$g(x)F\{f(x)\} = \frac{d}{dx}M(x)dx + \Delta N(x),$$

^{*} Cf. "Infinite developments and the composition property $(K_{12}B_1)_*$ in general analysis," by E. W. Chittenden, *Rendiconti del Circolo Matem. di Palermo*, vol. 39 (1915), p. 21, §§ 19 and 21.