This conic is tangent to the curve at t = 0, $t = \infty$, and intersects the curve at six other points. At one of the latter points a tangent to the conic is tangent to the curve at some other point. We may summarize with this theorem: The self-dual plane rational quintic admitting of the greatest possible number of correlations is invariant under a G_{12} consisting of collineations and correlations.

THROOP COLLEGE, February, 1919.

GROUPS CONTAINING A RELATIVELY LARGE NUMBER OF OPERATORS OF ORDER TWO.

BY PROFESSOR G. A. MILLER.

(Read before the American Mathematical Society March 29, 1919.)

§1. Introduction.

It is well known that every group which contains at least one operator of order 2 must contain an odd number of such operators and that there is an infinite number of groups such that each of them contains exactly 2m + 1 operators of order 2, where m is an arbitrary positive integer or 0. It is also known that if exactly one half of the operators of a group are of order 2 then the order of this group must be of the form 2(2m + 1) and it must be the dihedral or the generalized dihedral group of this order. Moreover, it has been proved that a group G of order

$$g = 2^{a}(2m+1)$$

cannot contain more than $2^{\alpha}m + 2^{\alpha} - 1$ operators of order 2, α being an arbitrary positive integer, and whenever G contains this number of operators of order 2 it is either the abelian group of order 2^{α} and of type $(1, 1, 1, \dots)$ or it is the direct product of the abelian group of order $2^{\alpha-1}$ and of type $(1, 1, 1, \dots)$ and the dihedral or the generalized dihedral group of order 2(2m + 1).*

^{*} G. A. Miller, this BULLETIN, vol. 13 (1907), p. 235.