This conic is tangent to the curve at $t=0, t=\infty$, and intersects the curve at six other points. At one of the latter points a tangent to the conic is tangent to the curve at some other point. We may summarize with this theorem: The self-dual plane rational quintic admitting of the greatest possible number of correlations is invariant under a G_{12} consisting of collineations and correlations.

Throop College, February, 1919.

GROUPS CONTAINING A RELATIVELY LARGE NUMBER OF OPERATORS OF ORDER TWO.

BY PROFESSOR G. A. MILLER.
(Read before the American Mathematical Society March 29, 1919.)

§ 1. Introduction.

It is well known that every group which contains at least one operator of order 2 must contain an odd number of such operators and that there is an infinite number of groups such that each of them contains exactly $2 m+1$ operators of order 2 , where m is an arbitrary positive integer or 0 . It is also known that if exactly one half of the operators of a group are of order 2 then the order of this group must be of the form $2(2 m+1)$ and it must be the dihedral or the generalized dihedral group of this order. Moreover, it has been proved that a group G of order

$$
g=2^{a}(2 m+1)
$$

cannot contain more than $2^{a} m+2^{a}-1$ operators of order 2 , α being an arbitrary positive integer, and whenever G contains this number of operators of order 2 it is either the abelian group of order 2^{a} and of type ($1,1,1, \cdots$) or it is the direct product of the abelian group of order 2^{a-1} and of type (1,1 , $1, \cdots$) and the dihedral or the generalized dihedral group of order $2(2 m+1)$.*

[^0]
[^0]: * G. A. Miller, this Bulletin, vol. 13 (1907), p. 235.

