For an even λ, this becomes

$$
\alpha-\alpha_{2}+\alpha_{4}-\cdots=1 .
$$

For any λ, there is $\alpha_{1}-\alpha_{3}+\alpha_{5}-\cdots=0$. When λ is odd, then $-\alpha+\alpha_{2}-\alpha_{4}+\cdots=1$. When n is odd, say $n=2 \lambda$ +1 , then $\alpha-\alpha_{2}+\alpha_{4}-\cdots=0$, and $\alpha_{1}-\alpha_{3}+\alpha_{5}-\cdots$ $=1$, when λ is odd; $-\alpha_{1}+\alpha_{3}-\alpha_{5}+\cdots=1$, when λ is even.

We shall, in particular, consider the case where (15) has the form

$$
\begin{equation*}
w^{n}-v^{2 k} \cdot u^{n-2 k}=0, \tag{16}
\end{equation*}
$$

in which n and k must both be either even or odd in order that (16) may reduce to (14) for $u=-1, v=-i$.

After a rather complicated process of elimination the cartesian equation of this special class of curves with the nth roots of unity as foci becomes

$$
\begin{equation*}
x^{n-2 k} \cdot y^{2 k}=(-1)^{n-2 k} \cdot \frac{(2 k)^{2 k}}{n^{n} \cdot(n-2 k)^{2 k-n}}, \tag{17}
\end{equation*}
$$

which is an n-ic. For $n=3, k=1$, we get the cubic hyperbola $x y^{2}=-4 / 27$. The condition for a proper n-ic in (17) is evidently $n-2 k \geqq 1, n \geqq 3$.

University of Illinois.

QUADRATIC SYSTEMS OF CIRCLES IN NON-EUCLIDEAN GEOMETRY.

 BY PROFESSOR D. M. Y. SOMMERVILLE.(Read before the American Mathematical Society, October 26, 1918.)
§ 1. The equation of any circle can be written

$$
\begin{equation*}
k S-\alpha^{2}=0 \tag{1}
\end{equation*}
$$

where $S=0$ is the equation of the absolute, and

$$
\alpha \equiv l x+m y+n z=0
$$

is the equation of the axis, the center being the absolute polar of this line.

