One can judge from the present paper the little value of the Weierstrassian formulas when the applications of the general theory are involved or whenever any kind of numerical computation is desired. One sees also how easy it is to introduce errors in the calculation. The book of Lévy already mentioned is in most respects an excellent work, certainly from the standpoint of applied mathematics, much of the material being new; but when a substitution involving an elliptic function in the Weierstrassian form is introduced, the book is not free from errors. For example, not to mention many inaccuracies, besides the mistake already cited, it is seen that on page 82 of Lévy's book $e_{1}+e_{2}+e_{3} \neq 0$. The same error is found on page 156, while in the calculation of ζu, the functions introduced on page 104 are incorrectly given. At the end of my larger work, volume 1, the Weierstrassian functions are put in juxtaposition with those of the older theory and it is seen that thereby nothing new is added.

University of Cincinnati, June 14, 1918.

ON PLANE ALGEBRAIC CURVES WITH A GIVEN SYSTEM OF FOCI.

BY PROFESSOR ARNOLD EMCH.
(Read before the American Mathematical Society, April 27, 1918.)

1. Let

$$
\begin{equation*}
\phi(u, v, w)=0 \tag{1}
\end{equation*}
$$

be a curve of class n, and

$$
\begin{equation*}
u \xi+v \eta+w \zeta=0 \tag{2}
\end{equation*}
$$

a line with the coordinates u, v, w, and $x^{\prime}=\xi / \zeta, y^{\prime}=\eta / \zeta$ current cartesian coordinates. Then

$$
\begin{equation*}
-1 \cdot \xi-i \cdot \eta+(x+i y) \xi=0 \tag{3}
\end{equation*}
$$

is a line which passes through the point (x, y) and the circular point I with the slope i. The coordinates of (3) are $u=-1$,

